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Abstract The Skorniakov-Ter-Martirosian (STM) integral equation is widely used for the quantum three-body prob-
lems of low-energy particles (e.g., ultracold atom gases). With this equation these three-body problems can be efficiently
solved in the momentum space. In this approach the boundary condition for the case that all the three particles are
gathered together is described by the upper limit of the momentum integral, i.e., the momentum cutoff. On the other
hand, in realistic systems, the three-body recombination (TBR) process can occur when all these three particles are
close to each other. In this process two particles form a deep dimer and the other particle can gain high kinetic energy
and then escape from the low-energy system. In the presence of the TBR process, the momentum-cutoff in the STM
equation would include a non-zero imaginary part. As a result, the momentum integral in the STM equation should
be done in the complex-momentum plane. In this case the result of the integral depends on the choice of the integral
path. Obviously, only one integral path can lead to the correct result. In this paper we consider how to correctly choose
the integral path for the STM equation. We take the atom-dimer scattering problem in a specific ultracold atom gas
as an example, and show the results given by different integral paths. Based on the result for this case we explore the
reasonable integral paths for general case.
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1 Introduction
The three-body problems are important for various

directions of quantum physics, e.g., nuclear physics,[1−3]

quantum chemistry,[4−5] condensed matter physics[6] and
ultracold gases.[3,7] By solving these problems one can not
only calculate the important parameters for the quantum
systems, e.g., the atom-dimer interaction intensity[8] and
chemical reaction rate,[4] but also explore many interest-
ing physical effects, e.g., the Efimov effect,[9−11] which is
induced by the scaling symmetry of three particles with
resonant s-wave interactions.

In the previous research of quantum three-body prob-
lems, many attentions are paid to the low-energy systems
where the de Broglie wavelength of the three particles are
much larger than the characteristic length of the inter-
particle interaction potentials. Two examples are the ul-
tracold atom gases and some low-energy nuclear systems.
For these systems the physical properties are determined
by a few parameters of the inter-particle interactions, such
as the two-body scattering lengths, and are independent
of the details of these interactions.[12] In another word, the
physical properties of these systems are very universal.

Technically speaking, in the low-energy three-body
problems the two-body interaction can be described by
simple zero-range potentials or finite-range separable po-
tentials. As a result, the three-body Schrödinger equation
can be re-expressed as an integral equation in the momen-
tum space, i.e., the Skorniakov-Ter-Martirosian (STM)
equation,[13] which is easy to be solved numerically. The
STM equation was initially developed by Skorniakov and
Ter-Martirosian in 1957, and has been widely used for the
three-body problems in various systems, e.g., the ultracold
gases or nuclear systems.

On the other hand, in the three-body problem with
zero-range inter-particle potentials, there are two types of
important boundary conditions. They are

(i) The “two-body short-range boundary conditions”
for the cases that two of the three particles are close to
each other, while the third one is far away from them.

(ii) The “three-body short-range boundary condition”
for the case that all the three particles are gathered to-
gether.

In the STM equation, the two-body short-range
boundary conditions are described by the parameters
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of two-body low-energy scattering, e.g., the scattering
length, while the three-body short-range boundary con-
dition is described by the upper limit of the integrals over
the three-body momentum,[14−17] i.e. the three-body mo-
mentum cutoff.

Furthermore, in many realistic cases, e.g., the ultra-
cold atom gases, when the three particles come together,
there occurs an inelastic scattering process, which is called
as the three-body recombination (TBR).[18−19] Through
this process, two particles can form a deep dimer while
the third particle obtains high kinetic energy. As a result,
the de Broglie wavelengths of all the three particles be-
comes pretty small, i.e., the particles “escape” from the
low-energy region. In the ultracold gases, with the help
of the kinetic energy obtained from the TBR processes,
the ultracold atoms can really loss from the trap. Accord-
ingly, in the presence of TBR the momentum cutoff in
the STM equation becomes a complex number with non-
zero imaginary part. As a result, the momentum integral
in the STM equation must be done in the complex mo-
mentum plane, rather than just along the real axis. In
this case, the result of the integral depends on the choice
of the integral path.[16] Thus, there is a crucial question:
which integration path is correct for the calculation of
three-body problem via STM equation?

In this paper we try to investigate this problem by tak-
ing a typical atom-dimer scattering problem as an exam-
ple. Explicitly, we consider the scattering between an ul-
tracold bosonic atom and a shallow dimer, which is formed
by one identical bosonic atom and another distinguishable
atom (Fig. 1), and compare the results given by different
momentum integral paths. With the help of our result, we
find the integral path, which may be always reasonable for
various cases, i.e., the path shown in Fig. 5 and described
in Sec. 4 in detail.

The remainder of this paper is organized as follows.
In Sec. 2, we describe the physical system we study and
show the STM equation. In Sec. 3, we compare the results
given by different integral paths. In Sec. 4, we generalize
them to the STM equations for more general cases. There
are some summary in Sec. 5.

2 System and STM Equation
As shown in Fig. 1, we consider a three-body system

consisted by two ultracold identical bosonic atoms (de-
noted by B), and another ultracold distinguishable atom
(denoted by X), with intra- and inter-species scattering
length aBB and aBX, respectively. Here we assume that the
scattering length aBX between each bosonic atom and the

atom X is positive and much larger than the range of the
inter-species interaction potential, i.e., the van der Waals
length rvdW. For realistic ultracold atom gases this can
be realized via the technique of Feshbach resonance.[20] In
this case one bosonic atom and the atom X can form a
shallow dimer with energy

Eb = − ~2

2µBXa2BX

, (1)

where µBX = mBmX/(mB + mX) is the reduced mass of
one bosonic atom and atom X, with mB and mX being
their respective masses. In addition, for the convenience
of our discussion, we further assume the absolute value of
the scattering length between the two bosonic atoms, i.e.,
|aBB|, is small enough so that the condition

|aBB| <
√
2mX/(mB +mX)aBX (2)

is satisfied.

Fig. 1 (Color online) Schematic of the three-body sys-
tem studied in this work. We consider two bosonic atoms
(denoted as B) and one extra atom (denoted as X), and
assume the two-body scattering length aBX between B
and X is positive and much larger than the van der Waals
length, so that one bosonic atom and the atom X can
form a shallow dimer. We calculate the scattering length
between this shallow dimer and the other bosonic atom.

In this work we study how to calculate the scatter-
ing length aad between the shallow BX-dimer and the
other bosonic atom. As shown above, for this system the
inter-atomic interactions can be described by zero-range
pseudo-potentials, and aad can be calculated via the STM-
equation approach. In Ref. [21] we derive the following
STM equation for this problem from the corresponding
Lippmann-Schwinger equation. We show that the STM
equation can be expressed as the following equations for
the functions {A(K, ε), η̃(K, ε)} (~ = mB = 1):

21/2µ
1/2
BX A(K, ε)

( K2

2mad
+ |Eb| − iε)1/2 + |Eb|1/2

− mX/mB + 1

2πK

∫ Λ e iζ

0

dK ′K
′A(K ′, ε)
K′2

2mad
− iε

ln
( K′2+K2

2µBX
+ K′K

M + |Eb| − iε

K′2+K2

2µBX
− K′K

M + |Eb| − iε

)

−
23/2π1/2mad

√
aBX

K

∫ Λ e iζ

0

dK ′K ′ η̃(K
′, ε)

I(K ′, ε)
ln
( K′2

2µBX
+K2 +K ′K + |Eb| − iε

K′2

2µBX
+K2 −K ′K + |Eb| − iε

)
= − mad

µBX(
K2

2µBX
+ |Eb| − iε)

+ iε

√
π

2aBX

1

[−|Eb|µBX + iεµBX − |K|2/2](|K|2 + |Eb|)
, (3)



No. 6 Communications in Theoretical Physics 755

− 1

2πmadK

∫ Λ e iζ

0

dK ′K
′A(K ′, ε)
K′2

2mad
− iε

ln
(K ′2 +K ′K + K2

2µBX
+ |Eb| − iε

K ′2 −K ′K + K2

2µBX
+ |Eb| − iε

)
+ 21/2π3/2µBX

√
aBXη̃(K, ε)

= − 1
K2

2µBX
+ |Eb| − iε

, (4)

with mad = (mX/mB + 1)/(mX/mB + 2) being the value
of the atom–dimer reduced mass in our natural unit, and
the function I(K ′, ε) in Eq. (3) being defined as

I(K ′, ε) =
( K ′2

4madµBX

+ |Eb| − iε
)1/2

− 1

aBB

. (5)

Here we take the complex angle Arg[z] of a complex num-
ber z to be in the region Arg[z] ∈ (−π,+π]. As we show
in Ref. [21], the atom-dimer scattering length aad is given
by

aad = lim
ε→0+

A(K = 0, ε) , (6)

with A(K, ε) being the solution of Eqs. (3) and (4).
In the STM equation (3) and (4), Λ e iζ is the upper

limit of the momentum integral, or the momentum cut-
off. Here the norm Λ is real and positive, and the real
number ζ is the phase angle. ζ is non-zero in the pres-
ence of the TBR process. As shown in Sec. 1, this upper
limit describes the boundary condition for the case that
all the three atoms are gathered together. For a realistic
ultra-cold atom system, the exact values of Λ and ζ are
determined by the short-range detail of the atom-atom
interaction. Usually Λ is of the order of 1/rvdW, with
rvdW being the van der Waals length, and ζ is small and
positive. For instance, for 41K-87Rb-87Rb system, ζ is
suggested to be about 0.19.[22]

3 Results Given by Different Integral Paths

It is clear that the integral
∫ Λ e iζ

0
dK ′ plays a central

role for the STM equation (3) and (4). Now we compare
the results given by different paths of this integral. To
be clear, we separately discuss the following three cases:
Case 1 aBB < 0, Case 2 0 < aBB < a∗, Case 3 aBB > a∗,
with the parameter a∗ being defined as

a∗ ≡ 1√
Re[Λ e iζ ]2/4µBXmad + |Eb|

. (7)

In the following we will show the reason why we define the
three cases as above.

Here we also emphasis that, as a result of the TBR
process, the scattering length aad has a non-zero imagi-
nary part. Furthermore, using the optical theorem one
can prove that the imaginary part of aad must be nega-
tive, i.e.,

Im(aad) < 0 . (8)

This is essentially due to the unitarity of the S-matrix of
the atom-dimer scattering process. Physically speaking,
the absolute value of Im(aad) is directly related to the
TBR rate or the three-body loss rate K3 via the relation

K3 = − 4π

mad
Im(aad) . (9)

Equation (8) is the necessary condition for the physically-
correct solution of the STM equation.

3.1 Case 1

For case 1 with aBB < 0, there are the following two
typical integral paths, as shown in Fig. 2(a). Path-I is the
straight line fromK ′ = 0 toK ′ = Λe iζ , while path-II con-
sists of two straight lines (in blue color with arrow): from
K ′ = 0 to K ′ = Re[Λ e iζ ] (denoted as path-IIa), and then
from K ′ = Re[Λ e iζ ] to K ′ = Λe iζ (path-IIb). It is clear

that for the integral
∫ Λ e iζ

0
dK ′ in the STM equation (3)

and (4), the integrands have no pole in the region between
these two paths in the limit ε → 0+. As a result, the solu-
tions of the STM equation with the two integration paths
are the same.

Fig. 2 (Color online) (a) Typical integration paths for
case 1; (b) and (c): Re[aad] and Im[aad] as functions of
aBB, for the systems of case 1. Here we take mB = mX ,
aBXΛ = 100, and ζ = 0.1, and show the results given by
path-I (red dashed-dotted line) and path-II (blue open
circles). The black dashed line in (c) indicates the posi-
tions with Im[aad] = 0.

In Figs. 2(b) and 2(c) we show the real and imaginary

parts of the atom-dimer scattering length aad given by the

STM equation with the two integral paths, for the cases

with three equal-mass atoms with ζ = 0.1. It is clearly
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illustrated that, as analyzed above, the two results are

same with each other. In addition, as shown in Fig. 2(c),

the condition (8) is well satisfied by the results given by

the integral path-I and path-II.

3.2 Case 2

Now we consider case 2 with 0 < aBB < a∗. Since

aBB > 0, in this case the two bosonic atoms can also form

a dimer (BB-dimer), whose energy Ẽb can be expressed as

Ẽb = − 1

a2BB

, (10)

in our natural unit. According to our assumption in

Eq. (2), we have |Ẽb| > |Eb|, i.e., the BB-dimer is a “deep

dimer” whose binding energy is larger than the one of the

shallow dimer formed by one bosonic atom and the atom

X.

In this case, the equation I(K ′, ε) = 0 with the func-

tion I(K ′, ε) being defined in Eq. (5), has one solution

near the positive half of the real axis of the complex K ′

plane in the limit ε → 0+. Explicitly, we have

I(K0 + iη, ε → 0+) = 0 , (11)

with

K0 = 2
√
µBXmad(|Ẽb| − |Eb|)1/2 , (12)

η = ε× 2µBXmad

K0
. (13)

It is clear that K0+ iη is a pole of the integrand of the

integral
∫ Λ e iζ

0
dK ′ in the STM equation (3). In addition,

since in this case we have 0 < aBB < a∗, with a∗ being

defined in Eq. (7), it is easy to prove that

K0 > Re[Λ e iζ ] . (14)

Therefore, in this case there are three typical integral

paths for the momentum integral in the STM equations, as

shown in Fig. 3(a). Path-I and path-II are defined as in the

above case 1. In addition, path-III consists of four straight

lines: the line from K ′ = 0 to K ′ = Re[Λ e iζ ] (path-IIIa,

same to path-IIa), then from Re[Λ e iζ ] to K ′ = K1 (path-

IIIb), then from K ′ = K1 to K ′ = K1 + iIm[Λ e iζ ] (path-

IIIc), and finally from K ′ = K1+ iIm[Λ e iζ ] to K ′ = Λe iζ

(path-IIId). Here K1 can be an arbitrary real number

larger than K0.

Since no pole of the integrand of the STM equation ap-

pears in the area surrounded by path-I and path-II, and

one pole (i.e., K0 + iη) appears in the area surrounded

by path-II and path-III, the direct analysis yields that the

the solution of the STM equation with momentum inte-

gral path-I and path-II would be same with each other,

while the path-III would lead to a different solution. So,

the question is: which path is reasonable?

To answer this question, we calculate the atom-dimer

scattering length aad with the STM equation with these

three integral paths, and show Re[aad] and Im[aad] in

Figs. 3(b) and 3(c), respectively. It is clearly shown that

the necessary condition in Eq. (8) is well-satisfied by all

the results from path-III, but violated by some results

from path-I and path-II. Therefore, in this case the path-

III is the reasonable integral path for the STM equation.

Fig. 3 (Color online) (a) Typical integration paths for
case 2; (b) and (c): Re[aad] and Im[aad] as functions of
aBB, for the systems of case 2. The parameters are same
as in Fig. 2. Here we show the results given by path-I
(red dashed-dotted line), path-II (blue open circles), and
path-III (magenta solid line).

3.3 Case 3

Now we consider case 3 with aBB > a∗. Similar as in

case 2, in this case the two bosonic atoms can also form a

deep dimer with energy Ẽb given by Eq. (10). As a result,

the pole K0+iη of the integrand of the integral
∫ Λ e iζ

0
dK ′

in the STM equation (3) can also appear near the positive

half of the real axis of the complex K ′ plane.

The only difference between the current case and case 2

is that, since aBB > a∗, in the current we have

K0 < Re[Λ e iζ ] . (15)

Thus, as shown in Fig. 4(a), now there are two typical

momentum integral paths, i.e., path-I and path-II, which

have the same definitions as in the above cases 1 and 2.

Nevertheless, the fact (15) yields that in the current case

the pole K0 + iη appears in the area surrounded by the

two paths. Thus, the results given by these two integral

paths would be different, and we should judge, which path

is reasonable.
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In Figs. 4(b) and 4(c) we show the real and imaginary

parts of the atom-dimer scattering length aad given by the

STM equation with these two integral paths. It is shown

that the results given by the path-II can satisfy the neces-

sary condition in Eq. (8), while the ones from path-I can

violate this condition. Thus, in the current case path-II is

reasonable.

Fig. 4 (Color online) (a) Typical integration paths for
case 3; (b) and (c) Re [aad] and Im [aad] as functions of
aBB, for the systems of case 3. The parameters are same
as in Fig. 2. Here we show the results given by path-I
(red dashed-dotted line), path-II (blue dotted line).

4 Generalization to Other Cases

In the above section we study how to choose the rea-

sonable momentum integral paths for the STM equa-

tion for the atom-dimer scattering problem introduced in

Sec. 2. Now we summarize the results obtained above to

some principle, which can be generalized to other three-

body problems.

Our above analysis for the three cases 1, 2, and 3 show

that, the positions of some poles of the integrands of the

integral
∫ Λ e iζ

0
dK ′ in the STM equation is very important

for the selection of the momentum integral path. Explic-

itly, the poles localized at the point K ′ = K∗ + iη∗ with

K∗ > 0 and η∗ → 0+ in the limit ε → 0+, with ε be-

ing the small positive imaginary part of the energy in the

Green’s function, are very important. The reasonable in-

tegral path from K ′ = 0 to K ′ = Λe iζ should go across

below all of these poles. The reasonable paths for the

above cases 1, 2, and 3 all satisfy this condition.

Thus, there is a special path, which would be always

reasonable, i.e., the path from K ′ = 0 to K ′ = +∞, and

then to K ′ = +∞ + iIm[Λ e iζ ] and then to K ′ = Λe iζ

(the path shown in Fig. 5(a)). Obviously, all the paths,

which can be continuously deformed from this path with-

out crossing any pole are also reasonable.

In addition, there is an interesting particular case, i.e.,

the case with ζ = 0 and some poles withK∗ > Λ. This can

be understood as the limit ζ → 0 of the above cases. Thus,

according to our above principle, as shown in Fig. 5(b), for

this case the reasonable integral path is not the path di-

rectly from K ′ = 0 to K ′ = Λ. It would be the path from

K ′ = 0 to K ′ = +∞, and then to K ′ = +∞+ iΓ, with Γ

being any finite positive value, and then to K ′ = Λ + iΓ,

and then to K ′ = Λ.

It is clear that, the above principle for the choosing

of the momentum integral path can be straightforwardly

applied to the STM equations for other three-body prob-

lems.

Fig. 5 (Color online) Reasonable integration paths for
general cases with ζ > 0 (a) and ζ = 0 (b).

5 Summary and Discussion

In this work we study how to choose the momentum

integral path for the STM equation. By studying a typi-

cal atom-dimer scattering problem, we show that different

integral path can lead to quite different solutions of the

STM equation, especially for the imaginary part of the

atom-dimer scattering length or the TBR rate K3.

More importantly, we find that the necessary condition

(8) can always be satisfied by the integral path, which the

paths, which can be continuously deformed from the spe-

cial path shown in Fig. 5 without crossing any pole. This

principle can be generalized to other three-body problems.

Thus, our result is very helpful for the study of low-energy

three-body problems in the presence of TBR.

To our knowledge, so far the quantitative expression

for the three-body short-range boundary condition in real

space, which is mathematically equivalent to the momen-

tum cutoff Λ e iζ and the reasonable integral path shown

above, has not been derived. In future we will try to ex-

plore this expression, so that the short-range physics can

be described more clearly.
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