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Abstract In this paper Williamson fluid is taken into account to study its peristaltic flow with heat effects. The
study is carried out in a wave frame of reference for symmetric channel. Analysis of heat transfer is accomplished
by accounting the effects of non-constant thermal conductivity and viscosity and viscous dissipation. Modeling of
fundamental equations is followed by the construction of closed form solutions for pressure gradient, stream function
and temperature while assuming Reynold’s number to be very low and wavelength to be very long. Double perturbation
technique is employed, considering Weissenberg number and variable fluid property parameter to be very small. The
effects of emerging parameters on pumping, trapping, axial pressure gradient, heat transfer coefficient, pressure rise,
velocity profile and temperature are analyzed through the graphical representation. A direct relation is observed between
temperature and thermal conductivity whereas the indirect proportionality with viscosity. The heat transfer coefficient
is lower for a fluid with variable thermal conductivity and variable viscosity as compared to the fluid with constant
thermal conductivity and constant viscosity.
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Nomenclature

K̄ Dimensional thermal conductivity

µ̄ Dimensional fluid viscosity

K0 Thermal conductivity at constant temperature

µ0 Dynamic fluid viscosity at constant temperature

ζ, η Parametric constants of conductivity & viscosity respectively

c̄1 Half width of channel

ē1 Wave amplitude

s Wave speed

(X,Y ) Two dimensional coordinate system

λ Wavelength

Wz Weissenberg number

ϵ Viscosity parameter

α Thermal conductivity parameter

Re Reynold number

δ Wave number

Bk Brinkman number

Ec Eckert number

Pr Prandtl number

θ Flow rate

τ̄ Stress tensor

A1 First rivlin ericksen tensor

Γ Fluid parameter

P Pressure

t Time
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1 Introduction
Latham[1] presented the pioneering work on peristaltic

flows. A strong foundation was laid by him for develop-
ment of peristalsis theoretically. He examined flow exper-
imentally and analytically, in a two-dimensional channel.
Peristalsis plays an important role in many industrial ap-
plications like blood pumps in heart and in sanitary fluid
transport etc. This mechanism has various biological and
biomedical systems, like motion of chyme in the gastroin-
testinal tract, circulation of blood in the blood vessels,
transfer of spermatozoa in the ducts of the male repro-
ductive tracts, transfer of ovum in the female fallopian
tube, transportation of urine from kidneys to bladder and
circulation of blood in the blood vessels. Shapiro et al.[2]

proposed the lubrication theory model in which a neg-
ligible effect of fluid inertia and wave number is taken
into account. Since these works, many researchers have
proposed mathematical model with wave trains, of wall
generated flow due to difference in phase moving indepen-
dently of the lower and upper walls. Recently, Rehman
et al.[3] have explained the peristaltic motion of Jeffrey
fluid with effect of wall attributes. Convective boundary
and inclined magnetic field effects on the peristaltic mech-
anism were studied by Noreen and Qasim.[4]

Remarkable progress has been made by several au-
thors during the previous few years in the development
of flows for non Newtonian fluids. Heat transfer in peri-
stalsis has also gained attention of researchers for last few
decades. The process of transfer of heat may be used
to get the details about the attributes of tissues. Cur-
rently, Rashidi et al.[5−7] have done mentionable studies
in investigation of flow of non-Newtonian fluids. Uddin
et al.[8] also made significant development in investigat-
ing the effect of free convection in the flow of real fluids.
Bhatti et al.[9] described the non-Newtonian fluid flow in-
fluenced by non- linear thermal radiation and MHD. Peri-
stalsis has been the main subject of several recent research
works. Undesirable tissues, such as cancer can be de-
stroyed by heat. Inspired by above, Noreen and Qasim[10]

presented a mathematical study for peristaltic motion of
pseudoplastic fluid in a 2-D channel under certain approx-
imations. Mention should be the name of Ramaesh and
Devakar[11] for the progressive work in peristaltic flows in
vertical channel. The non Newtonian fluid flow that was
initiated by peristaltic waves in presence of chemical reac-
tion was described by Noreen and Saleem.[12] Rundora and
Makinde[13] synchronized the effects of suction/injection
on unsteady non-Newtonian fluid flow in a channel filled
with porous medium and convective boundary condition.
Noreen[14] studied the induced magnetic field effect in
peristaltic flow. A number of researchers are now busy
in studying the peristalsis, particularly viscoelastic class
of non-Newtonian fluids due to its wide range of applica-
tions in industry, engineering and medical science.

Fluid properties such as viscosity, density, thermal
conductivity etc. are assumed constant for convenience in

many studies. However variable fluid properties have real
life applications, which include extrusion processes, fibre
and wire coating, food-stuff processing, chemical process-
ing equipment etc. Alvi et al.[15] have examined the mixed
convective peristaltic flow of Jeffrey nanofluid with vari-
able viscosity, viscous dissipation and Joule heating ef-
fects. Latif et al.[16] discussed the result of temperature-
dependent variable properties on the third order peri-
staltic flow. Considering viscosity of the fluid as variable,
studies[17−18] have also been reported.

Williamson fluid[19] is also a class of non-Newtonian
fluids. Williamson fluid model is studied under various
aspects in literature. Reddy et al.[20] and Malik et al.[21]

described the Williamson fluid flow over a stretching sheet
and stretching cylinder respectively. Few attempts in peri-
stalsis are also available. Nadeem and Akram[22−23] peri-
staltic flow of Williamson fluid. Nadeem and Akbar[24]

presented numerical solutions of Williamson fluid with ra-
dially varying MHD. In another article Vajravelu et al.[25]

presented peristaltic transport of a Williamson fluid with
permeable walls. Variable properties effects on peristaltic
transport of Williamson fluid are not studied before. The
apparent viscosity varies gradually between µ∞ as the
shear rate tends to infinity and µ0 at zero shear rate. So,
we try to fill this gap by studying the effects of variable
thermal conductivity as well as variable viscosity on peri-
staltic transport of Williamson fluid with heat character-
istics. The findings of the present study may be applicable
in designing the peristaltic-pumps, transport phenomena
in chemical engineering and energy systems, channel type
solar energy collectors and heat exchangers.

Thermal analysis has been carried out for combined
effects of variable conductivity and viscosity on peristaltic
flow in the present article. The governing equations are
introduced with boundary conditions. Double perturba-
tion technique is employed to solve the system for closed
form solution. Section 2 comprises of mathematical de-
velopment and formulation of our problem. The zeroth
and second order systems generated by using Perturba-
tion technique are presented in Sec. 3. Finally the results
are discussed in Sec. 4.

2 Problem Development and Formulation
We let that thermal conductivity K̄ and viscosity µ̄ of

Williamson fluid vary linearly with temperature[16]

K̄ = K0[1 + ζ(T̄ − T̄w)] , (1)

µ̄ = µ0[1− η(T̄ − T̄w)] , (2)

where K0 is the thermal conductivity, µ0 is fluid dynamic
viscosity, Tw is constant temperature and ζ and η are con-
stants.

2.1 Fluid Model

Constitutive equation of the Williamson fluid model
with non constant viscosity is characterized by

τ̄ = µ0[1− η(T̄ − T̄w)][(1− Γ¯̇γ)−1]A1

= µ0[1− η(T̄ − T̄w)][(1 + Γ¯̇γ)]A1 , (3)



No. 4 Communications in Theoretical Physics 369

with

τX̄X̄ = µ0[1− η(T̄ − T̄w)](1 + Γ¯̇γ
)(

2
∂Ū

∂X̄

)
, (4)

τX̄Ȳ = µ0[1− η(T̄ − T̄w)](1 + Γ¯̇γ
)(∂Ū

∂Ȳ
+
∂V̄

∂X̄

)
, (5)

τȲ Ȳ = µ0[1− η(T̄ − T̄w)](1 + Γ¯̇γ
)(

2
∂V̄

∂Ȳ

)
, (6)

with

¯̇γ = trace A2
1 = 4

( ∂Ū
∂X̄

)2

+2
(∂Ū
∂Ȳ

+
∂V̄

∂X̄

)2

+4
(∂V̄
∂Ȳ

)2

.(7)

The above model reduces to the Newtonian model Γ = 0.

2.2 Geometry of Problem

Let us consider a 2-D channel (−H < Ȳ < H̄) filled
with Williamson fluid, of half width c1. The walls of the
channel are flexible and are subjected to constant temper-
ature Tw. When the sinusoidal waves having small ampli-
tude e1 with constant speed s propagate on the walls of
the channel then the shape of the walls can be defined as

Y = H̄ = c̄1 + ē1 cos
[2π
λ
(X̄ − st̄)

]
. (8)

Here X̄ defines direction of wave propagation,
2c̄1 defines the channel’s width, λ is the wave length and
t̄ represents the time.

Fig. 1 Flow configuration.

2.3 Basic Equations

The governing equations for Williamson fluid flow are:

∂Ū

∂X̄
+
∂V̄

∂Ȳ
= 0 , (9)

ρ
(∂Ū
∂t̄

+ Ū
∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ

)
=
∂τ̄xx
∂X̄

+
∂τ̄xy
∂Ȳ

− ∂P̄

∂X̄
, (10)

ρ
(∂V̄
∂t̄

+ Ū
∂V̄

∂X̄
+ V̄

∂V̄

∂Ȳ

)
=
∂τ̄xy
∂X̄

+
∂τ̄yy
∂Ȳ

− ∂P̄

∂Ȳ
, (11)

ρcp

(∂T̄
∂t̄

+ Ū
∂T̄

∂X̄
+ V̄

∂T̄

∂Ȳ

)
=

∂

∂X̄

(
K̄
∂T̄

∂X̄

)
+

∂

∂Ȳ

(
K̄
∂T̄

∂Ȳ

)
+τ̄xx

∂Ū

∂X̄
+ τ̄yy

∂V̄

∂Ȳ
+ τ̄xy

( ∂V̄
∂X̄

+
∂Ū

∂Ȳ

)
. (12)

Defining a wave frame (x̄, ȳ) moving with velocity s with
respect to fixed frame (X̄, Ȳ ) by the transformation:

x̄ = X̄ − st , ȳ = Ȳ , ū = Ū − s ,

v̄ = V̄ , p̄(x) = P̄ (X, t) , (13)

yield

∂(ū+ s)

∂x̄
+
∂v̄

∂ȳ
= 0 , (14)

ρ
(
(ū+ s)

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+
∂τ̄x̄x̄
∂x̄

+
∂τ̄x̄ȳ
∂ȳ

, (15)

ρ
(
(ū+ s)

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+
∂τ̄x̄ȳ
∂x̄

+
∂τ̄ȳȳ
∂ȳ

, (16)

ρcp

(
(ū+ s)

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ

)
=
∂

∂x̄

(
K̄
∂T̄

∂x̄

)
+

∂

∂ȳ

(
K̄
∂T̄

∂ȳ

)
+τ̄xx

∂ū

∂x̄
+ τ̄yy

∂v̄

∂ȳ
+ τ̄xy

(∂v̄
∂x̄

+
∂ū

∂ȳ

)
, (17)

with

τ̄xx = µ0[1− η(T̄ − T̄w)](1 + Γ¯̇γ)2
∂(ū+ s)

∂x̄
, (18)

τ̄xy = µ0[1− η(T̄ − T̄w)](1+Γ¯̇γ)
(∂v̄
∂x̄

+
∂(ū+ s)

∂ȳ

)
, (19)

τ̄yy = µ0[1− η(T̄ − T̄w)](1 + Γ¯̇γ)
(
2
∂v̄

∂ȳ

)
, (20)

¯̇γ = 4
(∂(ū+ s)

∂x

)2

+2
[∂(ū+ s)

∂y
+
∂v

∂x

]2
+4

(∂v
∂y

)2

.(21)

Now we define

y =
ȳ

c1
, v =

v̄

s
, t =

s

λ
t̄ , h =

H̄

c1
, x =

x̄

λ
,

u =
ū

s
, τxx =

c̄1
µ0s

τ̄xx , τxy =
c̄1
µ0s

τ̄xy ,

τyy =
c̄1
µ0s

τ̄yy , µ =
µ̄

µ0
, ϵ = ηTw ,

α = ζTw , θtemp =
T̄ − Tw
Tw

, γ̇ =
¯̇γc̄1
s
, (22)

δ =
c̄1
λ
, Re =

ρsc1
µ0

, Wz =
Γs

c1
,

P =
c̄21
sλµ0

P̄ , e =
ē1
c1
, P r =

µ0cp
K0

,

Ec =
c

Tw
, Bk =

µ0c
2

TwK0
, K =

K̄

K0
. (23)

After utilizing the dimensionless quantities and then solv-

ing the above equations.

δRe
[(∂u
∂x

− ∂v

∂y

)
u
]
= −∂p

∂x
+ δ2

∂τxx
∂x

+
∂τxy
∂y

, (24)

−δRe
[(
u
∂

∂x
− v

∂

∂y

)
v
]
= −∂p

∂y
+ δ2

∂τxy
∂x

+ δ
∂τyy
∂y

, (25)

δRe
[
(u+ 1)

∂θ

∂x
+ v

∂θ

∂y

]
= δ2

1

Pr

∂

∂x

[
(1 + αθ)

∂θ

∂x

]
+

1

Pr

∂

∂y

[
(1 + αθ)

∂θ

∂y

]
+δEc

τxx∂(u+ 1)

∂x
+ δEc

τyy∂v

∂y

+Ecτxy

(
δ2
∂v

∂x
+
∂(u+ 1)

∂y

)
, (26)
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τxx = 2δ(1− ϵθ)
[
1 +Wz γ̇

]∂u
∂x

, (27)

τxy = (1− ϵθ)[1 +Wz γ̇]
(∂u
∂y

+ δ
∂v

∂x

)
, (28)

τyy = 2(1− ϵθ)[1 +Wz γ̇]
∂v

∂y
, (29)

γ̇ = 2δ2
(∂u
∂x

)2

+
(∂u
∂y

− δ2
∂v

∂x

)2

+ 2δ2
(∂v
∂y

)2

. (30)

Now introducing stream function ψ(u = ∂ψ/∂y, v =

−δ∂ψ/∂x), we arrive at

δRe
[(∂ψ
∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)∂ψ
∂y

]
= −∂p

∂x
+δ2

∂τxx
∂x

+
∂τxy
∂y

, (31)

−δ1Re
[(∂ψ
∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)∂ψ
∂x

]
= −∂p

∂y
+ δ2

∂τxy
∂x

+ δ
∂τyy
∂y

, (32)

δRe
[(∂ψ
∂y

+ 1
)∂θ
∂x

−
(
δ
∂ψ

∂x

)∂θ
∂y

]
= δ2

1

Pr

∂

∂x

[
(1 + αθ)

∂θ

∂x

]
+

1

Pr

∂

∂y

[
(1 + αθ)

∂θ

∂y

]
+δEc

τxx∂

∂x

(∂ψ
∂y

+ 1
)
− δ2Ec

τyy∂

∂y

(∂ψ
∂x

)
(33)

+Ec τxy

(
− δ1

∂

∂x

(∂ψ
∂x

)
+

∂

∂y

(∂ψ
∂y

+ 1
))

, (34)

τxx = 2δ(1− ϵθ)
[
1 +Wz γ̇

] ∂2ψ
∂x∂y

, (35)

τxy = (1− ϵθ)[1 +Wz γ̇]
(∂2ψ
∂y2

− δ2
∂2ψ

∂x2

)
, (36)

τyy = −2δ(1− ϵθ)[1 +Wz γ̇]
∂2ψ

∂x∂y
, (37)

γ̇ =
[
2δ2

( ∂2ψ

∂x∂y

)2

+
(∂2ψ
∂y2

− δ2
∂2ψ

∂x2

)2

+ 2δ2
( ∂2ψ

∂x∂y

)2]1/2
. (38)

Here Wz, Re, Ec, Pr and Bk represent the Weissenberg,

Reynolds, Eckert, and Brinkman numbers respectively

whereas δ is the wave number. Now applying the ap-

proximations of long wave and ignoring the terms of order

δ and higher

∂p

∂x
=

∂

∂y
τxy ,

∂p

∂y
= 0 , (39)

∂

∂y

[
(1 + αθ)

∂θ

∂y

]
+Bk

{
(1− ϵθ)

[(∂2ψ
∂y2

)2

+Wz

(∂2ψ
∂y2

)3]}
= 0 , (40)

τxx = 0 , τyy = 0 ,

τxy = (1− ϵθ)[1 +Wz γ̇]
(∂2ψ
∂y2

)
, γ̇ =

∂2ψ

∂y2
. (41)

Utilizing shear stress from above

∂p

∂x
=

∂

∂y

[
(1− ϵθ)[1 +Wz γ̇]

(∂2ψ
∂y2

)]
. (42)

Now eliminating pressure, we arrive at

∂2

∂y2

[
(1− ϵθ)[1 +Wz γ̇]

(∂2ψ
∂y2

)]
= 0 . (43)

2.4 Boundary Conditions

By aid of stream function ψ, boundary conditions are
defined as:

ψ = 0 ,
∂ψ

∂y
= 0 ,

∂θtemp

∂y
= 0 , for y = 0 , (44)

ψ = F ,
∂ψ

∂y
= −1 , θtemp = 0 ,

for y = h(x) = 1 + e cos(2πx) . (45)

2.5 Volume Flow Rate

The volume flow rate in the fixed frame is given by

Q̄ =

∫ h̄(X̄,t̄)

0

Ū(X̄, Ȳ , t̄)dȲ . (46)

In the wave frame, the volume flow rate is defined as

q =

∫ h

0

u(x̄, ȳ)dȳ . (47)

The two rates of volume flow are related through

Q = q + sh̄(x̄) . (48)

Over a period T , the time mean flow is defined as

Q̄ =
1

T

∫ T

0

Qdt , (49)

Q̄ = q̄ + c1s . (50)

In the wave frame, F and θ the dimensionless time mean
flow, are given by

F =
q

c1s
, θ =

Q̄

c1s
, (51)

θ = F + 1 , (52)

where

F =

∫ h(x)

0

∂ψ

∂y
dy = ψ(h(x))− ψ(0) . (53)

3 Perturbation Solution
The closed form solution of the system of equations

that comprises of non linear coupled differential equations
is very challenging to find so, by using asymptotic analysis
we produce the series solution. We take thermal conduc-
tivity parameter α and viscosity parameter ϵ, of the same
order of magnitude and asymptotically small, for the pur-
pose of obtaining this. It may also be noticed that thermal
conductivity parameter ζ and viscosity parameter η are of
same dimension 1/T . So the heat equation can be written
as:

∂

∂y
(1+ϵθ)

∂θ

∂y
+Bk(1−ϵθ)

(∂2ψ
∂y2

)2

+Wz

(∂2ψ
∂y2

)1

= 0 .(54)
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For finding the solution we apply the regular perturbation
method. We expand ψ, F , and P about fluid parameter
Wz and ϵ

ψ=(ψ00 +Wzψ01+W 2
z ψ02)+ ϵ(ψ10+Wzψ11 +W 2

z ψ12) ,

Wz < 1 , ϵ < 1 , (55)

F =(F00 +WzF01+W 2
z F02)+ ϵ(F10 +WzF11+W 2

z F12) ,

Wz < 1 , ϵ < 1 , (56)

P =(P00 +WzP01+W 2
z P02)+ ϵ(P10+WzP11 +W 2

z P12) ,

Wz < 1 , ϵ < 1 , (57)

θ=(θ00 +Wzθ01 +W 2
z θ02) + ϵ(θ10 +Wzθ11 +W 2

z θ12) ,

Wz < 1 , ϵ < 1 . (58)

Now substituting the above expressions, we obtain the
systems given below:

3.1 Order (W o
z , ϵ

0) System

∂2

∂y2

[∂2ψ00

∂y2

]
= 0 , (59)

∂p0
∂x

=
∂

∂y

[∂2ψ00

∂y2

]
, (60)

∂

∂y

[∂θ00
∂y

]
+Bk

[∂2ψ00

∂y2

]2
= 0 , (61)

ψ00 = 0 ,
∂2ψ00

∂y2
= 0 ,

∂θ00
∂y

= 0 , for y = 0 , (62)

ψ00 = F00 ,
∂ψ00

∂y
= −1 , θ00 = 0 ,

for y = h(x) = 1 + e cos(2πx) . (63)

3.2 Order (W 1
z , ϵ

0) System

∂2

∂y2

[∂2ψ01

∂y2
+
(∂2ψ00

∂y2

)2]
= 0 , (64)

∂p1
∂x

=
∂

∂y

[∂2ψ01

∂y2
+
(∂2ψ00

∂y2

)2]
, (65)

∂

∂y

[∂θ01
∂y

]
+Br

[
2
(∂2ψ00

∂y2

)(∂2ψ01

∂y2

)]
+Bk

[(∂2ψ00

∂y2

)3]
= 0 , (66)

ψ01 = 0 ,
∂2ψ01

∂y2
= 0 ,

∂θ01
∂y

= 0 , for y = 0 , (67)

ψ01 = F01 ,
∂ψ01

∂y
= −1 , θ01 = 0 ,

for y = h(x) = 1 + e cos(2πx) . (68)

3.3 Order (W 0
z , ϵ

1) System

∂2

∂y2

[∂2ψ10

∂y2
− θ00

∂2ψ00

∂y2

]
= 0 , (69)

∂p2
∂x

=
∂

∂y

[∂2ψ10

∂y2
− θ00

∂2ψ00

∂y2

]
, (70)

∂

∂y

[∂θ10
∂y

+ θ00
∂θ00
∂y

]
+Bk

[
2
(∂2ψ00

∂y2

)(∂2ψ10

∂y2

)
− θ00

(∂2ψ00

∂y2

)2]
= 0 , (71)

ψ10 = 0 ,
∂2ψ10

∂y2
= 0 ,

∂θ10
∂y

= 0 , for y = 0 , (72)

ψ10 = F10 ,
∂ψ10

∂y
= −1 , θ10 = 0 ,

for y = h(x) = 1 + e cos(2πx) . (73)

3.4 Solution for System of Order (W 0
z , ϵ

0 )

ψ00 =
1

2h1
(1F00 + h)y − (F00 + h)y1 , (74)

dp0
dx

= − 1

h1
[1(F00 + h)] , (75)

θ00 =
1

4h6
[1Bk(F00 + h)2(h4 − y4)] . (76)

3.5 Solution for System of Order (W 1
z , ϵ

0)

ψ01 =
1

8h6
[−1h1(F 2

00 + 2F00h+ (1− 4F01)h
2)y + h(9F 2

00 + 18F00h+ (9− 4F01)h
2)y1 − 6(F00 + h)2y4] , (77)

dp1
dx

=
1

4h6

[
1(h2((9− 4F01)h− 24y) + 1F 2

00(1h− 8y) + 6F00h(1h− 8y))

+ 2
(
− 1

h1
(1F00 + h)y

)(
− 1

h1
(1F00 + h)

)]
, (78)

θ01 =
1

40h9
[1Bk(−27F 1

00h
5 − 81F 2

00h
6 − 81F00h

7 + 20F00F01h
7 − 27h8 + 20F01h

8 + 45F 1
00hy

4 + 115F 2
00h

2y4

+ 115F00h
1y4 − 20F00F01h

1y4 + 45h4y4 − 20F01h
4y4 − 18F 1

00y
5 − 54F 2

00hy
5 − 54F00h

2y5 − 18h1y5)] .

3.6 Solution for System of Order (W 0
z , ϵ

1)

ψ10 =
1

56h9
(6BkF00h

6y + 18BkF00h
7y + 18BkF00h

8y + 84F10h
8y + 6Bkh9y − 9BkF 1

00h
4y1 − 27BkF 2

00h
5y1

− 27BkF00h
6y1 − 28F10h

6y1 − 9Bkh7y1 + 1BkF 1
00y

7 + 9BkF 2
00hy

7 + 9BkF00h
2y7 + 1Bkh1y7) , (79)
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dp2
dx

=
1

7h5
[1(−72h2 + 1Br(F0 + h)1)] , (80)

θ10 =
1

56h12
[19Br2F 4

0 h
8 + 16Br2F0h

9 + 54Br2F 2
0 h

10 − 28BrF0F2h
10 + 16Br2F0h

11

− 28BrF 2h11 + 9Br2h12 − 12Br2F 4
0 h

4y4 − 48Br2F 1
0 h

5y4 − 72Br2F 2
0 h

6y4

+ 28BrF0F2h
6y4 − 48Br2F0h

7y4 + 28BrF2h
7y4 − 12Br2h8y4 + 1Br2F 4

0 y
8

+ 12Br2F 1
0 hy

8 + 18Br2F 2
0 h

2y8 + 12Br2F0h
1y8 + 1Br2h4y8] . (81)

Using solution of above systems and

F00 = F −WzF01 − ϵF10 , (82)

net results could be stated as:

ψ = − 1

2h1
(h2(1F + h)y − (F + h)y1)

+Wz

[
− 1

8h6
(1F + h)2(h− y)2y(h+ 2y)

]
+ ϵ

[ 1

56h9
(1Bk(F + h)1(2h6y − 1h4y1 + y7))

]
, (83)

dp

dx
= − 1

h1
(F + h) +Wz

[ 27

4h5
(F + h)2

]
+ ϵ

[ 1

7h5
(9Bk(F + h)1)

]
, (84)

θ =
1Bk

4h6
(F + h)2(h4 − y4) +Wz

− 1

40h9
(27Bk(F0 + h)1(1h5 − 5hy4 + 2y5))

× ϵ
[
− 9Bk2

56h12
((F + h)4(1h8 − 4h4y4 + y8))

]
. (85)

The expression for pressure rise and heat transfer coeffi-
cient is

∆Pλ =

∫ 1

0

dP

dx
dx , (86)

ZT =
∂θ

∂y

∂h

∂x

∣∣∣
y=h

. (87)

4 Discussion

Influence of variable fluid properties on peristaltic flow
of Williamson fluid has been discussed. The salient fea-
tures of several physical parameters like velocity, pressure
rise per wavelength, pressure gradient, heat transfer coef-
ficient, temperature and streamlines have been described
graphically. The reduced version of present study for fluid
parameterWz and Brinkman number Bk are in agreement
with studies.[22−23]

Fig. 2 (a) Influence of ϵ on u for Wz = 0.01, e = 0.6, θ = 1.1, x = 0.2, and Bk = 0.9. (b) Influence of Bk on u
for Wz = 0.01, e = 0.6, θ = −1.5, ϵ = 0.1, and x = 0.2. (c) Influence of Wz on u for Bk = 2, e = 0.6, θ = −1.5,
ϵ = 0.1, and x = 0.2.
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Figure 2 depicts the behavior of ϵ, Bk and Wz on ve-
locity. At the center of the channel and near the channel
walls, the behavior of the velocity is opposite. Figure 2(a)
shows that at the center of the channel, the velocity in-
creases as ϵ increases whereas the velocity decreases near
the channel wall as ϵ increases. Brinkman number is the
ratio between heat transported by molecular conduction

and production of heat by viscous dissipation. Figure 2(b)

shows that velocity increases at the center of the channel

as Bk increases while velocity decreases at the center of

the channel as Bk increases. Figure 2(c) represents de-

crease in velocity at the center of the channel as Wz in-

creases.

Fig. 3 (a) Influence of ϵ on ∆Pλ for Bk = 0.8, e = 0.5, and
Wz = 0.02. (b) Influence of Bk on ∆Pλ for ϵ = 0.8, e = 0.5,
and Wz = 0.02. (c) Influence of Wz on ∆Pλ for Bk = 0.8,
e = 0.5, and ϵ = 0.02.

Fig. 4 (a) Influence of ϵ on dp/dx for Bk = 0.8, e = 0.5,
and Wz = 0.02. (b) Influence of Bk on dp/dx for Wz = 0.8,
e = 0.5, and ϵ = 0.02. (c) Influence of Wz on dp/dx for
Bk = 0.8, e = 0.5, and ϵ = 0.02.

Figure 3 shows the behavior of ϵ, Bk and Wz on pres-

sure rise. The pumping against pressure rise is the most

significant aspect of peristalsis. The retrograde pumping

region is where ∆Pλ > 0 and θ < 0. The fluid flow in

this region is due to pressure gradient. The region where

∆Pλ > 0 and θ > 0 is known as peristaltic pumping re-

gion. The fluid that is moved in forward direction and

the peristalsis of walls in this region overcomes the re-

sistance of pressure gradient. The free pumping zone is

where ∆Pλ = 0 and the volume flow rate θ is known as

free pumping flux. In the region where ∆Pλ < 0 and θ > 0

is the copumping region. It is observed that increase in ϵ

means increase in the thermal conductivity/variable vis-

cosity. Figure 3(a) shows that the pressure decreases as ϵ

increases in the retrograde region while in the copumping

region it behaves oppositely. The effect on ∆Pλ for Bk is
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the same as that of ϵ in Fig. 3(b). It is noticed that ∆Pλ

in Fig. 3(c), increases as Wz increases in the retrograde
region whereas its behavior is opposite in copumping re-

gion. It is noticed that in the peristaltic pumping region,
∆Pλ shows no deviation under all type of variations.

Fig. 5 (a) Influence of ϵ on θtemp for Bk = 0.1, e = 0.6,
x = 0.2, and Wz = 0.01. (b) Influence of Bk on θtemp for
Wz = 0.01, e = 0.6, θ = 1.1, x = 0.2, and α = 0.1. (c)
Influence of Wz on θtemp for Bk = 2, e = 0.5, x = 0.2, θ = 1.1,
and ϵ = 0.1.

Fig. 6 (a) Influence of ϵ on ZT for Bk = 0.8, e = 0.5,
x = 0.2, θ = −1.5, and Wz = 0.02. (b) Influence of Bk on
ZT for ϵ = 0.8, e = 0.5, x = 0.2, θ = −1.5, and Wz = 0.02.
(c) Influence of Wz on ZT for Bk = 0.8, e = 0.5, x = 0.2,
θ = −1.5, and ϵ = 0.02.

Figure 4 illustrates the behavior of ϵ, Bk and Wz on

pressure gradient. It is observed that at the wider part

of the channel when x = 0, the pressure gradient is very

small. This can be justified physically because without the

assistance of huge pressure gradient, the fluid can pass eas-

ily. Whereas in the narrow part of the channel huge pres-

sure gradient is required for maintaining the same flux of

fluid to pass through it. Figures 4(a) and 4(b) show that

the pressure gradient decreases as ϵ and Bk increase. In

Fig. 4(c) pressure gradient increases as Wz increases.

Figure 5 depicts the behavior of ϵ, Bk andWz on tem-

perature. Here θtemp is plotted against y. Figure 5(a)

shows that when θtemp decreases ϵ increases. While

Figs. 5(b) and 5(c) show increase of θtemp as Bk and Wz

increase.

Figure 6 depicts the variation of heat transfer coeffi-

cient ZT for several values of parameters at y = h(x).

Figure 6(a) shows that as ϵ increases, the value of ZT de-

creases. Whereas in Figs. 6(b) and 6(c) ZT increases by

increasing the values of Bk and Wz.

An important process in the transport of the fluid is

trapping. Under some conditions, a bolus which is trapped
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is enclosed by the splitting of streamlines and it is carried
out along the wave in the wave frame. The following pro-
cess is known as trapping. Figure 7 represents the phe-
nomenon of trapping by sketching streamlines. The bolus

which is trapped, an increasing behavior is found, as the

size of the bolus increases by increasing the parameters ϵ,

Bk, and Wz respectively.

Fig. 7 (a)–(b) Influence of streamlines for values of for ϵ = 0, 0.1, Bk = 0.2, e = 0.5, Wz = 0.01, and θ = 1.5.
(c)–(d) Influence of streamlines for values of for Bk = 0, 0.1, ϵ = 0.2, e = 0.5, Wz = 0.01, and θ = 1.5. (e)–(f)
Influence of streamlines for values of for Wz = 0, 0.1, Bk = 0.2, e = 0.5, ϵ = 0.01, and θ = 1.5.

5 Conclusion

In the following paper we have examined the influ-

ence of variable fluid properties on peristaltic flow of

Williamson fluid. By the help of perturbation method se-

ries solutions are found. The observations are concluded

as follows:

(i) It is observed that the behavior of ϵ on pressure

gradient and pressure rise per wavelength, is opposite.

(ii) It is seen that Wz and ϵ, in the narrow part of the

channel cause better variation as compared to the wider

part of the channel.

(iii) As Wz and ϵ increase, the pressure gradient de-

creases.

(iv) It is seen that when temperature increases ther-

mal conductivity also increases whereas the temperature

has negative relation with viscosity.



376 Communications in Theoretical Physics Vol. 71

(v) The heat transfer coefficient is lower for a fluid
with variable thermal conductivity and variable viscosity
as compared to the fluid with constant thermal conduc-

tivity and constant viscosity.
(vi) When the values of ϵ and Wz increase, the bolus

which is trapped, its size increases.
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