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Abstract In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where
the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,
the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long
wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into
a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved
using the generalized differential quadrature method (GDQM). This is the first attempt to solve the nonlinear equations
arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in
order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in
Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various
parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically
conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly
decreasing in nature when the intensity of the electrical conductivity parameter is strengthened.
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Nomenclature

a1, a2 Dimensional upper and lower wall amplitudes [m]

a, b Non-dimensional upper and lower wall amplitudes [−]

Br Brinkman number, µc2/
[
k
(
T̄1 − T̄0

)]
[−]

B0 Uniform applied magnetic field [Kg · s−1 ·A−1]

c Wave speed [m · s−1]

Cp specific heat [J ·Kg−1 ·K−1]

d Non-dimensional width of channel [−]

d1, d2 Distances from center line of channel [m]

J Current density [A ·m−2]

k Thermal conductivity [W ·m−1 ·K−1]

M2 Magnetic parameter, σ0B2
0d

2
1/µ[−]

P̄ , p̄ Dimensional pressure in the laboratory and wave frames [Pa]

Q̄, q Volumetric flow rate in laboratory and wave frames [m3 · s−1]

Re Reynolds number, ρcd1/µ[−]

T, T0, T1 Temperature field, Temperature at lower and upper wall respectively [K]

t̄ Dimensional time parameter [s]

Ū , V̄ Dimensional velocity components in laboratory frame [m · s−1]

ū, v̄ Dimensional velocity components in wave frame [m · s−1]

X̄, Ȳ Dimensional coordinates in laboratory frame [m]

x̄, ȳ Dimensional coordinates in wave frame [m]

β Non-dimensional electric conductivity parameter [−]

δ Non-dimensional wave number [−]

θ Non-dimensional temperature [−]

ϕ Phase difference [−]

σ Electric conductivity of fluid [Sm−1]
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(Continued)

λ Wave length [m]

ρ Density of fluid [Kg ·m−3]

µ Dynamic viscosity [Kg ·m−1 · s−1]

ψ̄ Dimensional stream function in wave frame [m2s−1]

1 Introduction

Study of peristaltic pumping of fluids has been the
point of interest and motivation for researchers through
many years. Peristalsis in practice is to push the material
inside the tube-like structures when the progressive waves
of area contraction and expansion are made to propagate
along the tube’s length. A wide range of applications of
peristalsis is reported in medical and engineering science
such as in physiology, the mechanism is used by the body
to mix and drive the content inside the tube such as urine
is pushed from kidney to bladder in ureter duct,[1] diges-
tive system,[2] blood circulation in vessels, bile movement
in a bile ducts, movement of food bolus, transport of ovum
and cilia are a few applications. Similarly, the working
of biomedical instruments such as a heart-lung machine
(HLM) and blood pumps used in dialysis are also based
on this principle. The same mechanism is also exploited
in many industrial processes such as corrosive and toxic
fluids are transported through roller and finger pumps.

Mathematical modeling and analysis of peristaltic
transport were developed by Shapiro et al.[3] in wave frame
and Fung and Yih[4] in the laboratory frame for the New-
tonian fluids. Two-dimensional peristaltic means of trans-
port was investigated numerically by Takabatake et al.[5]

and Brown et al.[6] without using assumptions of long
wavelength and low Reynolds number. Interaction of peri-
staltic transport and heat transfer has also acquired much
attention due to their extensive use in industrial and clini-
cal processes. Laser therapy, cryosurgery, oxygenation and
hemodialysis require thermal modeling. Also, other pro-
cesses like condensation, crystallization, evaporation are
amongst the core applications of heat transfer. Radhakr-
ishnamacharya and Srinivasulu[7] studied the peristaltic
flow of viscous fluid in presence of wall properties and
heat transfer. Mekheimer[8] combined the effects of MHD
and heat transfer on wavy motion of viscous fluid in the
vertical channel. Srinivas and Kothandapani[9] studied
heat effects on the peristaltic motion of fluid through the
asymmetric channel. Very recently, Mosayebidorcheh and
Hatami[10−11] analytically investigated the heat transfer
effects on the peristaltic flow of nanofluids in an asymmet-
ric channel. Bhatti et al.[12] studied the peristaltic trans-
port of two-phase fluid flow with heat and mass transfer
in a porous channel.

Magnetohydrodynamics (MHD) refers to study the ef-
fects of the magnetic field when applied to the electrically
conducting fluids in motion. MHD peristaltic motion flu-
ids are of great importance because of its wide range of

applications in geophysics, astrophysics, sensors, engineer-
ing and magnetic drug targeting in clinical science. Misra
et al.[13] combined heat and MHD effects on the peristaltic
motion of a fluid with varying physical and thermal prop-
erties in an asymmetric channel. Noreen and Saleem[14]

studied MHD peristaltic motion in a porous medium un-
der the Soret and Dufour effects with chemical reaction
and thermal radiation. Reddy[15] analytically investigated
the velocity slip and MHD effects on the peristaltic flow
through a porous medium together with heat and mass
transfer. Sud et al.[16] observed the effect of magnetic
field on the blood flow and concluded that it increases the
velocity of the blood. Akbar[17] investigated the MHD ef-
fects with nanoparticles on Eyring-Powell fluid model in
peristaltic motion. Agrawal and Anwaruddin[18] studied
different aspects of MHD blood flowing peristaltically in
the equally branched channel, viewing its applications in
cardiac operations and arterial stenosis. Abbasi et al.[19]

also analyzed mathematically the effects of variable viscos-
ity on peristaltic motion of MHD fluids with Soret and Du-
four relations. Reddy et al.[20−21] conducted the study of
peristaltic flow of an incompressible non-Newtonian fluid
in presence of MHD and partial slip effects in asymmetric
channel.

Influence of Joule heating on peristaltic flow of fluids
with constant electrical conductivity has been carried
out by many researchers, such as Refs. [22–24] but none
has related temperature dependent electrical conductiv-
ity with peristalsis as per authors’ knowledge. In this
paper, we propose a peristaltic flow model of Newtonian
fluid with variable electrical conductivity. Assumptions
of long wavelength and low Reynolds number are used
to simplify governing equations from laboratory frame to
wave frame. Thus, resulting equations after simplification
are solved numerically by utilizing Generalized Differential
Quadrature Method (GDQM).[25−27] Results obtained by
the aforementioned method for velocity profile, temper-
ature profile, pressure rise and streamlines are analyzed
graphically by giving different values to the appearing pa-
rameters in the flow phenomenon.

2 Mathematical Model

In an asymmetric arrangement of the channel of width
(d1 + d2), viscous type of electrically conducting fluid is
assumed to be in peristaltic motion. The fluid is subject to
a constant transverse magnetic field B = (0, B0, 0). The
lower and upper walls of the channel are assumed to be
in T1 and T0 temperatures, respectively, where T1 > T0.
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Furthermore, the geometry of the wavy fluid walls is de-
scribed by following sinusoidal function

H̄1 = d1 + a1 cos
[2π
λ
(X̄ − ct̄)

]
, (1)

H̄1 = −d2 − a2 cos
[2π
λ
(X̄ − ct̄) + ϕ

]
. (2)

Here a1, a2, d1, d2 are constrained to criterion of inequal-
ity

[
a21 + a22 + 2a1a2 cosϕ

]
≤ (d1 + d2)

2
, in which ϕ is the

phase difference between the upper and the lower walls
and 0 ≤ ϕ ≤ π. Also, the symmetry of the channel de-
pends on ϕ, where ϕ = 0 corresponds to a symmetric
channel with waves out of phase and ϕ = π is taken for a
symmetric channel with waves are in phase. Vector form
of continuity, momentum and heat equations is:

∇ · V = 0 , (3)

ρ
dV

dt̄
= −∇P̄ + µ(∇2V ) + J ×B , (4)

ρCp

(dT
dt̄

)
= k(∇2T ) + µ(S ·L) +

J · J
σ̄(T )

, (5)

where V is the velocity field, d/dt is the material deriva-
tive, L = ∇V is the gradient of velocity, S = L+LT and
J is the current density in absence of induced magnetic
field, is defined as J = σ̄ (T ) [V ×B] .

In the fixed frame, the governing Eqs. (3)–(5) become

∂Ū

∂X̄
+
∂V̄

∂Ȳ
= 0 , (6)

ρ
[∂Ū
∂t̄

+ Ū
∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ

]
= − ∂P̄

∂X̄
+ µ

[ ∂2Ū
∂X̄2

+
∂2Ū

∂Ȳ 2

]
−σ̄ (T )B2

0Ū , (7)

ρ
[∂V̄
∂t̄

+ Ū
∂V̄

∂X̄
+ V̄

∂V̄

∂Ȳ

]
= −∂P̄

∂Ȳ
+ µ

[ ∂2V̄
∂X̄2

+
∂2V̄

∂Ȳ 2

]
, (8)

ρCp

[∂T
∂t̄

+ Ū
∂T

∂X̄
+ V̄

∂T

∂Ȳ

]
= k

[ ∂2T
∂X̄2

+
∂2T

∂Ȳ 2

]
+µΦ+ σ̄ (T )B2

0Ū
2 . (9)

Here, k is the thermal conductivity, Φ is the viscous dissi-
pation and σ̄ (T ) is the temperature dependent electrical
conductivity, where

Φ =
(∂Ū
∂Ȳ

+
∂V̄

∂X̄

)2

+ 2
[( ∂Ū
∂X̄

)2

+
(∂V̄
∂Ȳ

)2]
, (10)

and σ̄ (T ) is the temperature dependent electrical conduc-
tivity, given by[28]

σ̄ (T ) = σ0 [1 + β1 (T − T0)] . (11)

In order to reduce Eqs. (6)–(9) in a set of coupled or-
dinary differential equations; we introduce the following
transformations and dimensionless variables and parame-
ters as:

Ū
(
X̄, Ȳ , t̄

)
= ū (x̄, ȳ) + c , V̄

(
X̄, Ȳ , t̄

)
= v̄ (x̄, ȳ) ,

P̄
(
X̄, Ȳ , t̄

)
= p̄ (x̄, ȳ) ,

T
(
X̄, Ȳ , t̄

)
= T̄ (x̄, ȳ) , X̄ = x̄+ ct̄, Ȳ = ȳ , (12)

x̄ = xλ, ȳ = yd1, ū = uc, v̄ = vcδ ,

p̄ =
(
cλµ/d21

)
p, θ =

T̄ − T̄0
T̄1 − T̄0

,

ψ̄ = ψ/ (cd1) , u = ∂ψ/∂y, v = −δ∂ψ/∂x ,
β = β1

(
T̄1 − T̄0

)
, δ = d1/λ ,

h1 = H̄1/d1, h2 = H̄2/d1, d = d2/d1,

b = a2/d1, Re = ρcd1/µ ,

M = B0d1
√
σ0/µ, Br = µc2/

[
k
(
T̄1 − T̄0

)]
. (13)

Finally, after considering the assumptions of long wave
length δ (i.e. δ ≪ 1) and low Reynolds number Re (i.e.,
Re≪ 1) we get,

∂p

∂x
=
∂3ψ

∂y3
−M2

(∂ψ
∂y

+ 1
)
(βθ + 1) , (14)

∂p

∂y
= 0 , (15)

∂2θ

∂y2
+Br

(∂2ψ
∂y2

)2

+BrM2
(∂ψ
∂y

+ 1
)2

(βθ + 1) . (16)

From Eq. (15) the pressure p depends only on x alone,
hence, the pressure gradient can be eliminated from Eq.
(14) for giving the reducing equation

∂4ψ

∂y4
−M2 ∂

∂y

[(∂ψ
∂y

+ 1
)
(βθ + 1)

]
= 0 . (17)

In dimensionless form, the associated boundary conditions
are defined as

ψ = −F/2, ∂ψ

∂y
= −1, θ = 1 at y = h2,

ψ = +F/2,
∂ψ

∂y
= −1, θ = 0 at y = h1 . (18)

Here, h2 ≤ y ≤ h1, where h1 = 1 + a cos (2πx) and
h2 = −d− b cos (2πx+ ϕ) .

In a fixed frame, the instantaneous volume flow rate is
given by

Q̄ =

∫ H̄1

H̄2

Ū
(
X̄, Ȳ , t̄

)
dȲ , (19)

in which the limits of integration H1 and H2 are functions
of X̄ and t̄.

In view of Eq. (19), we define the volumetric flow rate
in a wave frame as

q =

∫ h̄1

h̄2

ū (x̄, ȳ) dȳ , (20)

since h̄1 and h̄2 depend only on x̄, then

Q̄ = q + c
(
h̄1 − h̄2

)
. (21)

The time averaged flow over a period T at a fixed position
X̄ is defined as

Q∗ =
1

T

∫ T

0

Q̄dt . (22)

Making use of Eq. (21) in Eq. (22), we obtain

Q∗ = q + c (d1 + d2) . (23)

For the present problem, the dimensionless time-mean
flows Q and F in the fixed and wavy frame are defined
respectively as

Q =
Q∗

cd1
, (24)
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F =
q

cd1
. (25)

Hence, we can write the following relationship

Q = F + 1 + d . (26)

As shown in Fig. 1, the irregular physical domain [h2, h1]
considered in this investigation can be mapped into the
computational domain [0, 1] by considering the following
transformations

x = f∗(ξ) , y = g∗(ξ, η), h1(x) = h1(f
∗(ξ)) = h∗1(ξ) ,

h2(x) = h2(f
∗(ξ)) = h∗2(ξ) , ψ(x, y) = ψ(f∗(ξ) ,

g∗(ξ, η)) = ψ∗(ξ, η) , θ(x, y) = θ(f∗(ξ) ,

g∗(ξ, η)) = θ∗(ξ, η) . (27)

Here

f∗ (ξ) = ξ , g∗ (ξ, η) = ∆ (ξ) η + h∗2 , ∆(ξ) = h∗1 − h∗2 ,

∂mψ∗

∂ym
=

1

∆m

∂mψ∗

∂ηm
,

∂mθ∗

∂ym
=

1

∆m

∂mθ∗

∂ηm
, (28)

where m denotes the order of the partial derivative.

Fig. 1 Streamlines mapped into (a) the physical domain
(x, y) and (b) the computational domain (ξ, η) when a = 0.5,
b = 0.5, d = 1, Q = 1.5, ϕ = π/3, M = 0.9, Br = 0.3, and
β = 0.4.

Consequently, for each cross–section of the geometry,
the resulting dimensionless Eqs. (16) and (17) can be writ-
ten in the form

Lψ∗ (ψ∗, θ∗) +Nψ∗ (ψ∗, θ∗) = 0 , (29)

Lθ∗ (ψ
∗, θ∗) +Nθ∗ (ψ

∗, θ∗) +BrM2 = 0 , (30)

in which the linear and nonlinear parts Lψ∗ , Lθ∗ , Nψ∗ , and
Nθ∗ are given by

Lψ∗ (ψ∗, θ∗) =
1

∆4

∂4ψ∗

∂η4
− M2

∆2

∂2ψ∗

∂η2
− βM2

∆

∂θ∗

∂η
, (31)

Lθ∗ (ψ
∗, θ∗) =

1

∆2

∂2θ∗

∂η2
+BrβM2θ∗ +

2BrM2

∆

∂ψ∗

∂η
, (32)

Nψ∗ (ψ∗, θ∗) = −βM
2

∆2

∂ψ∗

∂η

∂θ∗

∂η
− βM2

∆2

∂2ψ∗

∂η2
θ∗ , (33)

Nθ∗ (ψ
∗, θ∗) =

Br

∆4

(
∂2ψ∗

∂η2

)2

+
BrM2

∆2

(∂ψ∗

∂η

)2

+
2BrβM2

∆

∂ψ∗

∂η
θ∗ +

BrβM2

∆2

(∂ψ∗

∂η

)2

θ∗ , (34)

and the modified boundary conditions take the following
form

ψ∗ = −F/2, ∂ψ∗

∂η
= −∆, θ∗ = 1 at η = 0 ,

ψ∗ = +F/2,
∂ψ∗

∂η
= −∆, θ∗ = 0 at η = 1 .(35)

As mentioned above, we can express the longitudinal pres-
sure gradient as follows

dp∗

dξ
=

1

∆3

∂3ψ∗

∂η3

∣∣∣∣
η=0

− M2

∆

∂ψ∗

∂η

∣∣∣∣
η=0

− βM2θ∗ (ξ, 0)−M2 . (36)

Here p∗ is the transformed pressure, where p∗ = p (f∗ (ξ)) .

3 Solution Methodology and Validation
For solving the obtained coupled system of nonlinear

partial differential equations described by Eqs. (29) and
(30) and the boundary conditions (35), the generalized
differential quadrature method (GDQM) is used during in
this investigation as a powerful method to find out the nu-
merical results by computing themth-order partial deriva-
tives with respect to η of both ψ∗ (ξ, η) and θ∗ (ξ, η) . Fol-
lowing this approach, the partial derivatives of ψ∗ (ξ, η)
and θ∗ (ξ, η) with respect to space variable η at a given
discrete point ηi can be written as follows

∂mψ∗

∂ηm

∣∣∣∣
η=ηi

=

N∑
j=1

d
(m)
ij ψ∗(ξ, ηi) , (37)

∂mθ∗

∂ηm

∣∣∣∣
η=ηi

=
N∑
j=1

d
(m)
ij θ∗(ξ, ηi) . (38)

Here, d
(m)
ij are the weighting coefficients for the mth-

order derivative and N is the total number of sampling
points of the grid distribution in the transversal direction,
where i and j are integers varying from 1 to N. Accord-
ing to Shu,[25] the weighting coefficients for the first-order
derivative discretization with arbitrary distribution of grid
points are expressed as follows

d
(1)
ij =

N∏
k=1,k ̸=i

(ηi − ηk) /[(ηi − ηj)

N∏
k=1,k ̸=j

(ηj − ηk)] , (39)

for i ̸= j and

d
(1)
ij = −

N∑
j=1, j ̸=i

d
(1)
ij , (40)

for i = j, where i = 1, 2, 3, . . . , N.
Similarly, the weighting coefficients of the second and

higher-order derivatives can be calculated from those of
the first-order derivative by the following recurrence rela-
tions

d
(m)
ij = m

(
d
(m−1)
ii d

(1)
ij −

d
(m−1)
ij

ηi − ηj

)
, (41)

for i ̸= j and

d
(m)
ij = −

N∑
j=1,j ̸=i

d
(m)
ij , (42)

for i = j, where i = 1, 2, . . . , N.
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In order to obtain accurate results using a few num-

bers of grid points N , it is more useful to choose the

Chebyshev-Gauss-Lobatto grid points, which are greatly

denser close to the boundaries and their co-ordinates con-

stitute the roots of the Chebyshev polynomial. These col-

location points can be written in the form

ηi =
1

2

{
1− cos

[( i− 1

N − 1

)
π
]}
, (43)

where i = 1, 2, . . . , N and 0 ≤ ηi ≤ 1.

Under the above consideration, the dimensionless func-

tions ψ∗ (ξ, η) and θ∗ (ξ, η) are approximated in each col-

location point ηi by ψ
∗
i (ξ) and θ

∗
i (ξ) , respectively. Hence,

after discretizing the transformed problem with some rear-

rangements, Eqs. (29) and (30) together with the bound-

ary conditions (35) are simplified as

(S) :



ψ∗
i (ξ) + F/2 = 0 ,

N∑
j=1

d
(1)
ij ψ

∗
j (ξ) + ∆ = 0 ,

Lψ∗
i
(ψ∗
i (ξ) , θ

∗
i (ξ)) +Nψ∗

i
(ψ∗
i (ξ) , θ

∗
i (ξ)) = 0 ,

3 ≤ i ≤ N − 2 ,
N∑
j=1

d
(1)
Njψ

∗
j (ξ) + ∆ = 0 , ψ∗

N (ξ)− F/2 = 0 ,

θ∗i (ξ)− 1 = 0 ,

Lθ∗
i
(ψ∗
i (ξ) , θ

∗
i (ξ)) +Nθ∗

i
(ψ∗
i (ξ) , θ

∗
i (ξ))

+BrM2 = 0, 2 ≤ i ≤ N − 1,

θ∗N (ξ) = 0 ,

(44)

where

Lψ∗
i
(ψ∗
i , θ

∗
i ) =

1

∆4

N∑
j=1

d
(4)
ij ψ

∗
j −

M2

∆2

N∑
j=1

d
(2)
ij ψ

∗
j −

βM2

∆

N∑
j=1

d
(1)
ij θ

∗
j , (45)

Lθ∗
i
(ψ∗
i , θ

∗
i ) =

1

∆2

N∑
j=1

d
(2)
ij θ

∗
j +BrβM2θ∗i +

2BrM2

∆

N∑
j=1

d
(1)
ij ψ

∗
j , (46)

Nψ∗
i
(ψ∗
i , θ

∗
i ) = −βM

2

∆2

( N∑
j=1

d
(1)
ij ψ

∗
j

)( N∑
j=1

d
(1)
ij θ

∗
j

)
− βM2

∆2

( N∑
j=1

d
(2)
ij ψ

∗
j

)
θ∗i , (47)

Nθ∗
i
(ψ∗
i , θ

∗
i ) =

Br

∆4

( N∑
j=1

d
(2)
ij ψ

∗
j

)2

+
BrM2

∆2

( N∑
j=1

d
(1)
ij ψ

∗
j

)2

+
2BrβM2

∆

( N∑
j=1

d
(1)
ij ψ

∗
j

)
θ∗i +

BrβM2

∆2

( N∑
j=1

d
(1)
ij ψ

∗
j

)2

θ∗i . (48)

Additionally, the pressure gradient arising in Eq. (36) can be numerically computed in a cross-section ξ as follows

dp∗

dξ
=

1

∆3

N∑
j=1

d
(3)
1j ψ

∗
j −

M2

∆

N∑
j=1

d
(1)
1j ψ

∗
j − βM2θ∗1 −

βM2

∆

( N∑
j=1

d
(1)
1j ψ

∗
j

)
θ∗1 −M2 . (49)

As shown above, the numerical procedure used in this investigation leads to a nonlinear system (S) constituted by 2N

algebraic equations, which can then be solved using an algorithm based on the Newton-Raphson technique.

To validate our numerical computations and test the efficiency of the proposed method, several tabular and graph-

ical comparisons are carried out, in order to obtain a reliable physical prediction. In Tables 1 and 2, we present a

comparison of the engineering quantities ψ
(2)
y (x, h2) , ψ

(2)
y (x, h1) , θ

(1)
y (x, h2), and θ

(1)
y (x, h1) obtained by the help of

the Mathematica’s NDSolve function and the generalized differential quadrature method (GDQM), for various para-

metric values M, Br and β, when a = 0.5, b = 0.5, d = 1, Q = 1.5, x = 0.1, and ϕ = π/3. As expected, it is found

an excellent agreement in term of the absolute accuracy of the order of 10−6 between both methods, when we choose

N = 50 as the number of collocation points. Hence, the tabular results confirm the validity of our numerical code and

the effectiveness of the generalized differential quadrature method (GDQM). More, comparison of present results with

the existing study is presented in Table 3. The obtained results are found to be in an excellent agreement.

Table 1 Comparison between our numerical results and those given by Mathematica software for ψ2
y (x, h2) and ψ

2
y (x, h1)

in the case where a = 0.5, b = 0.5, d = 1, Q = 1.5, x = 0.1 and ϕ = π/3.

M Br β ψ2
y (x, h2) =

∂2ψ

∂2y

∣∣∣∣
y=h2

ψ2
y (x, h1) =

∂2ψ

∂2y

∣∣∣∣
y=h1

NDSolve GDQM NDSolve GDQM

0.0 0.3 0.4 2.008 55 2.008 55 −2.008 55 −2.008 55

0.3 0.3 0.4 2.026 40 2.026 40 −2.033 00 −2.033 00

0.6 0.3 0.4 2.081 30 2.081 30 −2.106 83 −2.106 83

0.9 0.3 0.4 2.177 16 2.177 16 −2.231 69 −2.231 69
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Table 1 (Continued)

0.6 0.0 0.2 2.074 38 2.074 38 −2.087 19 −2.087 19

0.6 0.1 0.2 2.075 46 2.075 46 −2.088 27 −2.088 27

0.6 0.2 0.2 2.0765 5 2.076 55 −2.089 36 −2.089 36

0.6 0.3 0.2 2.077 65 2.077 65 −2.090 46 −2.090 46

0.8 0.4 0.0 2.124 21 2.124 21 −2.124 21 −2.124 21

0.8 0.4 0.2 2.134 27 2.134 27 −2.156 37 −2.156 37

0.8 0.4 0.4 2.145 81 2.145 81 −2.189 73 −2.189 73

0.8 0.4 0.6 2.158 94 2.158 94 −2.224 38 −2.224 38

Table 2 Comparison between our numerical results and those given by Mathematica software for θ1y (x, h2) and θ1y (x, h1)
in the case where a = 0.5, b = 0.5, d = 1, Q = 1.5, x = 0.1 and ϕ = π/3.

M Br β θ1y (x, h2) =
∂θ

∂y

∣∣∣∣
y=h2

θ1y (x, h1) =
∂θ

∂y

∣∣∣∣
y=h1

NDSolve GDQM NDSolve GDQM

0.0 0.3 0.4 0.049 35 0.049 35 −0.899 61 −0.899 61

0.3 0.3 0.4 0.078 88 0.078 88 −0.929 60 −0.929 60

0.6 0.3 0.4 0.169 15 0.169 15 −1.021 55 −1.021 55

0.9 0.3 0.4 0.325 47 0.325 47 −1.181 45 −1.181 45

0.6 0.0 0.2 −0.425 12 −0.425 12 −0.425 12 −0.425 12

0.6 0.1 0.2 −0.232 16 −0.232 16 −0.618 43 −0.618 43

0.6 0.2 0.2 −0.038 36 −0.038 36 −0.812 58 −0.812 58

0.6 0.3 0.2 0.156 26 0.156 26 −1.007 57 −1.007 57

0.8 0.4 0.0 0.430 64 0.430 64 −1.280 89 −1.280 89

0.8 0.4 0.2 0.466 40 0.466 39 −1.319 42 −1.319 42

0.8 0.4 0.4 0.504 06 0.504 06 −1.360 05 −1.360 04

0.8 0.4 0.6 0.543 77 0.543 77 −1.402 93 −1.402 93

Table 3 Comparison between our numerical results and the results of Srinivas and Kothandapani[29] for the ideal heat
transfer coefficient Z = h

(1)
1 θ

(1)
y (x, h1) in the case where β = 0, b = 0.6, d = 1.5 and ϕ = π/4.

x = 0.1 x = 0.2 x = 0.3

a F M Br Ref. [29] GDQM Ref. [29] GDQM Ref. [29] GDQM

0.5 −2.0 2.0 1.0 1.0586 1.0586 1.4556 1.4556 1.7596 1.7596

0.7 −2.0 2.0 1.0 1.5418 1.5418 2.0650 2.0650 2.6909 2.6909

0.9 −2.0 2.0 1.0 2.0542 2.0542 2.6953 2.6953 3.8524 3.8524

1.1 −2.0 2.0 1.0 2.5920 2.5920 3.3484 3.3484 5.3457 5.3457

0.5 −0.5 2.0 3.0 8.9333 8.9333 15.9061 15.9061 17.4565 17.4565

0.5 −1.0 2.0 3.0 5.9373 5.9373 9.1554 9.1554 7.6982 7.6982

0.5 −1.5 2.0 3.0 3.6075 3.6075 4.4727 4.4727 2.5390 2.5390

0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789

0.5 −2.0 0.0 3.0 1.8449 1.8449 1.8352 1.8352 1.9738 1.9738

0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789

0.5 −2.0 3.0 3.0 2.1353 2.1353 1.9120 1.9120 1.9932 1.9932

0.5 −2.0 4.0 3.0 2.3848 2.3848 1.9920 1.9920 2.0182 2.0182

0.5 −2.0 2.0 1.0 1.0586 1.0586 1.4556 1.4556 1.7596 1.7596

0.5 −2.0 2.0 2.0 1.5013 1.5013 1.6569 1.6569 1.8692 1.8692

0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789

0.5 −2.0 2.0 4.0 2.3868 2.3868 2.0595 2.0595 2.0885 2.0885
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4 Results and Discussions

This section is devoted to analyze and discuss the

behavior of velocity profile u (x, y) , temperature profile

θ (x, y), pressure gradient dp/dx and streamlines on vary-

ing the dominating physical parameters appearing in the

flow problem like Hartmann numberM, electrical conduc-

tivity parameter β, and Brinkman number Br. In Fig. 2

velocity profiles u are plotted for various values of Hart-

mann numberM . It is obvious to note that velocity profile

u is decreasing centrally but increasing slightly near the

walls of channel when Hartmann number M is steadily

increased. This happens because, the magnetic field in-

teracts with the electrically conducting fluid and generate

a Lorentz force which is opposite in the direction of fluid

flow and therefore, the fluid velocity decreases. Since the

electrical conductivity parameter β appears due to the

Lorentz force in momentum equation, it might affect in

the same way as does the Hartmann numberM . Its effect

on velocity profile u is exhibited in Fig. 3, wherein veloc-

ity profile u is seen to be weakened on strengthening the

intensity of electrical conductivity.

Fig. 2 Velocity profile u (x, y) for different values of Hart-
mann number M , when a = 0.5, b = 0.5, d = 1, Q = 1.5,
x = 0.1, ϕ = π/3, Br = 0.3, and β = 0.4.

Fig. 3 Velocity profile u (x, y) for different values of electrical
conductivity parameter β, when a = 0.5, b = 0.5, d = 1,
Q = 1.5, x = 0.1, ϕ = π/3, Br = 0.3, and M = 0.8.

Fig. 4 Temperature profile θ (x, y) for different values of
Hartmann number M , when a = 0.5, b = 0.5, d = 1, Q = 1.5,
x = 0.1, ϕ = π/3, Br = 0.3, and β = 0.4.

Figure 4 presents the analysis of temperature profile

θ against the increasing values of Hartmann number M .

Physically, increasing values of decelerate the fluid flow

consequently the friction between the fluid layers increases

and generates frictional heating, which enhances the tem-

perature. It is noticed that down the stream temperature

is decreasing because of increasing values of Hartmann

number M . Similar effects on temperature profile θ are

observed in case of increasing electrical conductivity pa-

rameter β, shown in Fig. 5. Brinkman number Br ap-

pears in heat equation due the dissipation term. In the

flow process kinetic energy is converted into heat energy

due to viscous dissipation and increasing Brinkman num-

ber Br is same as to increase the heat energy. Thus Fig. 6

follows the trend of increasing temperature on increasing

the values of Brinkman number Br.

Figure 7 is drawn to study the effects of Hartmann

number M on pressure gradient. Here pressure gradient

may be classified as the adverse pressure gradient and fa-

vorable pressure gradient on being positive and negative

respectively. From this figure we note that pressure gra-

dient is increasing in the domain [−0.4, 0] and [0.4, 1.0]

while decreasing in [−1.0,−0.4] and [0, 0.4]. Overall pres-

sure gradient is decreasing in magnitude on the increase

in Hartmann number M .
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Fig. 5 Temperature profile θ (x, y) for different values of
electrical conductivity parameter β, when a = 0.5, b = 0.5,
d = 1, Q = 1.5, x = 0.1, ϕ = π/3, Br = 0.3, and M = 0.8.

Fig. 6 Temperature profile θ (x, y) for different values of
Brinkman number Br, when a = 0.5, b = 0.5, d = 1, Q = 1.5,
x = 0.1, ϕ = π/3, β = 0.3, and M = 0.6.

Fig. 7 Variation of pressure gradient dp/dx for different val-
ues of Hartmann number M , when a = 0.5, b = 0.5, d = 1,
Q = 1.5, x = 0.1, ϕ = π/3, Br = 0.3, and β = 0.4.

Fig. 8 Variation of pressure gradient dp/dx for different
values of electrical conductivity parameter β, when a = 0.5,
b = 0.5, d = 1, Q = 1.5, x = 0.1, ϕ = π/3, Br = 0.4, and
β = 0.8.

Figure 8 shows the behavior of pressure gradient when electrical conductivity parameter β is given boost. It is

noticeable that strengthening the intensity of electrical conductivity, the same effects of decreasing pressure gradient

are observed. Since the electrical conductivity parameter β contributes in Lorentz force and Joule heating so its effects

might be the same as to that of magnetic number and Joule heating parameter. The phenomenon of trapping in

peristalsis is the split of streamlines and formation of a bolus when the fluid is moving in wave frame. Figures 9 and

10 are exhibited to observe the effects of Hartmann number M and electrical conductivity parameter β respectively.

In both figures volume of trapped bolus is observed to be decreasing subsequently on increasing the Hartmann number

M and electrical conductivity parameter β. Initially bolus is seen to be formed centrally in the absence of magnetic

field and electrical conductivity. Gradually strengthening both the factors, trapped bolus is seen to shift to upward

boundary of the channel and eventually disappears on increasing Hartmann number M and electrical conductivity

parameter β.
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Fig. 9 Streamlines for different values of Hartmann number
M , when a = 0.5, b = 0.5, d = 1, Q = 1.5, x = 0.1, ϕ = π/3,
Br = 0.3, and β = 0.4.

Fig. 10 Streamlines for different values of electrical conduc-
tivity parameter β, when a = 0.5, b = 0.5, d = 1, Q = 1.5,
x = 0.1, ϕ = π/3, Br = 0.4, and M = 0.8.
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