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Abstract This paper aims to investigate the geodesic motion in the spacetime of a non-linear magnetic charged black
hole surrounded by quintessence. By varying the Lagrangian corresponding to the metric, the orbital motion equation has
been obtained. The effects of the magnetic charge Q, positive normalization factor C, angular momentum b, and energy
E on time-like and null geodesic motion are discussed from three aspects: orbital stability, orbital types, and circular
orbits. By comparing the effects of the above parameters C, b on the effective potential, it is found that quintessence has
an impact on the types and stability of orbits. In addition, for time-like orbital motion, when 3.443113 ≤ b ≤ 6.392 578
(for fixed C = 0.0002, M = 1, Q = 0.7), there are bound orbits, and within this range, the stable circular orbits exist,
and the radii of the innermost and outermost stable circular orbit are r = 5.912 654 and r = 56.745 933, respectively. For
null orbital motion, the orbital types have only unstable circular orbit which occur at r = 2.951 072 (E2 = E2

2 = 0.4),
absorb orbits and escape orbits, but no stable circular orbits, and bound orbits.
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1 Introduction
Cosmological observations such as the cosmic mi-

crowave background, baryon acoustic oscillation, Hubble
measurements, and the supernovae type Ia[1−2] suggest
that our universe is undergoing an accelerated phase of
expansion. Astrophysicists and cosmologists believe that
the reason for the accelerated expansion of the universe is
due to dark energy.[3−4] According to observations, more
than seventy percent of the universe are composed of dark
energy.

Quintessence is one of the candidates for dark energy,
with negative state parameter wq (the ratio of pressure to
density), and −1 < wq < −1/3. In 2003, Kiselev[5] de-
rived a spherical symmetric solution of the Einstein equa-
tions describing the Schwarzschild black hole surrounded
by quintessence, which attracted wide attention of re-
searchers. Using WKB approximation approach, quasi-
normal modes of a black hole surrounded by quintessence
have been studied in Refs. [6–14]. The existence of Nariai
type black holes with quintessence for special values of the
parameters in the theory has been shown by Fernando.[15]

And he also investigated the properties of the charged
black hole surrounded by the quintessence.[16] The solu-
tion of non-linear magnetic charged black hole surrounded

by quintessence is derived in Ref. [17]. The quintessence
around the black hole also corrects the thermodynamic
quantities. By using the improved brick-wall model, Ma et
al.[18] evaluated the entropy of a Schwarzschild spacetime
surrounded with the quintessence. In Ref. [19], a solution
of Einstein equations with quintessential matter surround-
ing a d-dimensional black hole is found, then the Hawking
radiation in this black hole background has been inves-
tigated. Azreg-Anou[20] has obtained the quintessence-
dependent enthalpy and new extreme solutions in charged
de Sitter-like black holes. The thermodynamic stabili-
ties of uncharged and charged black holes surrounded by
quintessence have been studied in Ref. [21].

Furthermore, the study of the geodesic structure helps
us to understand different gravitational properties of a
gravitational center, especially in the strong field regime,
like neutron stars and black hole. In recent years, the
field on the geodesic motion in the black hole became a
fertile ground for researchers[22−37] from different point of
view. In Schwarzschild AdS black hole spacetime, a com-
plete discussion for the geodesic motion has been made
in Ref. [38], they found all kinds of orbits, which are per-
mitted according to the energy levels. Enolskii et al.[39]

studied the particle motion in Kehagias-Sfetsos black hole
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spacetime, which is a static spherically symmetric solu-
tion of a Horava-Lifshitz gravity model. Malakolkalami
and Ghaderi[40] analyzed the null geodesics and all types
of orbital motion in the Schwarzschild-anti de Sitter black
hole surrounded by quintessence spacetime by means of
the effective potential for the photons.

In this paper we discuss geodesic motion in the space-
time of the non-linear magnetic charged black hole sur-
rounded by quintessence. The organization of this work
is as follows. In the second sections, we obtain the equa-
tions of geodesic motion by varying the Lagrangian. In
the third and fourth sections, we mainly concentrate on
the influence of magnetic charge Q, energy levels E, posi-
tive normalization factor C, angular momentum b on the
geodesic motion of time-like and null. In the last section,
the conclusion is drawn.

2 Equations of the Orbital Motion
The metric of the spacetime of non-linear magnetic

charged black hole surrounded by quintessence is given
by[17]

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2dθ2 + r2 sin2 θdϕ2 , (1)

with

g(r) = 1− 2Mr2

r3 +Q3
− C

r3wq+1
, (2)

where M denotes the black hole mass, C respects the pos-
itive normalization factor, Q is the magnetic charge. wq

is the quintessential state parameter, which is constrained
to the interval −1 < wq < −1/3. It is obvious that when
C = 0 the metric is the Hayward-like black hole met-
ric; when Q = 0 the metric is the Schwarzschild solution
surrounded by quintessence; when Q = 0, C = 0 it is
the Schwarzschild black hole one. Then, from here on we
put particle mass m = 1, this means that the related pa-
rameters are expressed in units of m. The Lagrangian
corresponding to the metric Eq. (1) is

L =
1

2
(−g(r)ṫ2 + g(r)−1ṙ2 + r2ϕ̇2) , (3)

where a dot represents differentiation with respect to the

affine parameter, τ . The Euler-Lagrange equation is

d

dτ

( ∂L

∂ẋν

)
− ∂L

∂xν
= 0 . (4)

By substituting Eq. (4) into Eq. (3), we can get

ṫ =
E

g(r)
, r2 sin2 θϕ̇ = b . (5)

Without loss of generality, we put θ = π/2. Then Eq. (5)

can be written as

ṫ =
E

g(r)
, ϕ̇ =

b

r2
. (6)

Substituting Eq. (6) into Eq. (3), we can get

ṙ2 = E2 −
(
1− 2Mr2

r3 +Q3
− C

r3wq+1

)( b2
r2

+ L
)
. (7)

Here, the effective potential equation can be defined as

V 2
eff =

(
1− 2Mr2

r3 +Q3
− C

r3wq+1

)( b2
r2

+ L
)
. (8)

Now we have obtained the effective potential equa-

tion in the non-linear magnetic charged black hole sur-

rounded by quintessence spacetime. Interestingly, in the

case of short distances (Q/r ≫ 1), the function g(r) ≃
1−Λr2/3−C/r3wq+1, with Λ = 6M/Q3, the effective po-

tential equation is V 2
eff = g(r)(b2/r2 + 1). Comparing the

two curves in Fig. 1(a), we can see that the behavior curves

of non-linear magnetic charged black hole surrounded by

quintessence spacetime and de-Sitter geometry are very

similar as Q/r ≫ 1. However, there is no circular or-

bit in de-Sitter geometry. In the case of large distances

(Q/r ≪ 1), the function g(r) = 1 − 2M/r − C/r3wq+1,

the effective potential equation is V 2
eff = g(r)(b2/r2 + 1).

It is shown in Fig. 1(b) that the behavior of the effec-

tive potential of particle in non-linear magnetic charged

black hole surrounded by quintessence is similar to a

Schwarzschild black hole surrounded by quintessence, es-

pecially Q/r ≪ 1.

Fig. 1 (a) The behaviors of the effective potential of particle in non-linear magnetic charged black hole surrounded
by quintessence (Non-Q) and de-Sitter geometry for fixed b = 4.2, M = 1, Q = 0.7, C = 0.0002. (b) The behaviors
of the effective potential of particle in non-linear magnetic charged black hole surrounded by quintessence (Non-Q)
and Schwarzschild black hole surrounded by quintessence (Sch-Q) for fixed b = 4.2, M = 1, Q = 0.7, C = 0.0002.
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Fig. 2 (a) The behaviors of the effective potential of particle with different wq for fixed other different parameters.
Line 1 represents wq = −0.4, C = 0.001, b = 4.3, M = 1, Q = 0.5; Line 2 represents wq = −0.6, C = 0.0008,
b = 4.2, M = 1, Q = 0.7; Line 3 represents wq = −0.8, C = 0.0008, b = 4.1, M = 1, Q = 0.5; Line 4 represents
wq = −0.8, C = 0.0006, b = 4.0, M = 1, Q = 0.3. (b) The behaviors of the effective potential of particle with
different wq for fixed b = 4.2, M = 1, C = 0.0002, Q = 0.7.

Furthermore, Fig. 2(a) shows the behaviors of the effec-
tive potential of particle with different wq for fixed dif-
ferent values of other parameters Q, C, b. In order to
better analyze the orbital types of particle or photon with
various parameters, we consider the parameter range that
can make the orbital types at most (the existence of sta-
ble circular orbits and bound orbits). Taking b = 4.2,
M = 1, C = 0.0002, Q = 0.7 as an example, Fig. 2(b)
clearly shows that when −0.838 356 ≤ wq < −1/3, the
orbital types are the most, including absorb orbits, un-
stable circular orbits, stable circular orbits, bound orbits,
and escape orbits; when −1 < wq < −0.838 356, there are
only absorb orbits, unstable circular orbits, and escape
orbits, but no bound orbits and stable circular orbits for
the orbital types. Obviously, the effective potential anal-
ysis of the former is more representative than that of the
latter, and the orbital types of the former includes all the
orbital types of the latter. For convenience, this paper we
consider the case of state parameter wq = −2/3 (when wq

takes other values, the analysis is similar) and the param-
eter range that can make the orbital types at most (the
existence of stable circular orbits and bound orbits).

3 Time-Like Orbital Motion

In the case of time-like geodesics, we have that L = 1,
Eq. (8) can be rewritten as follows:

V 2
eff =

(
1− 2Mr2

r3 +Q3
− C

r3wq+1

)( b2
r2

+ 1
)
. (9)

In this section, we aim to obtain the influence of positive
normalization factor C, magnetic charge Q, angular mo-
mentum b, and energy E on the geodesic motion for fixed
black hole mass M = 1.

3.1 Magnetic Charge Q

In Fig. 3, the dependence of the effective potential is
shown with different values of Q for fixed b = 4.2, M = 1,
C = 0.0002. From this figure one can easily see that with

the decrease of magnetic charge Q, the peak of curves is
going to be decreased, the location of peak and the in-
tersection of the effective potential and r-axis come far
away the central of black hole. Moreover, one can con-
clude from Fig. 4 that as Q increases, the radius of the
unstable circular orbit decreases, while the radius of the
stable circular orbit increases. In this case, the radius of
the unstable and stable circular orbit in Schwarzschild and
Schwarzschild solution surrounded by quintessence (Sch-
Q) are 3.832 776, 13.807 224; 3.833 210, 14.162 434, re-
spectively. Comparing the radius of circular orbit under
three spacetime conditions, we can see that for the radius
of unstable circular orbit: rSch-Q > rSch > rNon, for the
radius of stable circular rSch < rSch-Q < rNon-Q.

Fig. 3 The behaviors of the effective potential of parti-
cle with different Q for fixed b = 4.2, M = 1, C = 0.0002.

3.2 Positive Normalization Factor C

In the case of C = 0, there is no quintessence, the
equations of the orbital motion, and the corresponding
effective potential are as follows:

ṙ2 = E2 − V 2
eff , (10)

V 2
eff =

(
1− 2Mr2

r3 +Q3

)( b2
r2

+ 1
)
. (11)
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In the case of C ̸= 0, there is quintessence, then the equa-
tions of the orbital motion and corresponding effective po-
tential are as follows:

ṙ2 = E2 − V 2
eff , (12)

V 2
eff =

(
1− 2Mr2

r3 +Q3
− rC

)( b2
r2

+ 1
)
. (13)

For the circular orbits, the corresponding effective poten-
tial must satisfy

E2 = V 2
eff , (14)

dV 2
eff

dr
= 0 . (15)

In order to obtain a critical value that can be used to de-
termine the occurrence of a stable circular orbit, we still
need guarantee follows equation simultaneously

d2V 2
eff

dr2
= 0 . (16)

Fig. 4 The radius of the unstable circular orbit runs
(a) and the radius of the stable circular orbit rsta (b) of
particle with different Q for fixed C = 0.0002, M = 1,
b = 4.2.

By solving the above Eq. (13) to Eq. (16), we get the
critical value C = 0.001 322, which represents the radius
of the outermost circular orbit is r = 21.236 694 3. In
Fig. 5, the effective potential of the particle motion with
different C is shown, where we fix parameters b = 4.2,
M = 1, Q = 0.7. When C ≤ 0.001 322, for example
C = 0.0001 and C = 0.0004, the stable circular orbit ex-
ists; when C > 0.001 322, the stable circular orbit disap-
pears. Furthermore, the peak of effective potential curve
increases with the decrease of C. With respect to the
radius of the unstable circular orbits (runs) and stable

circular orbits (rsta) on C, runs and rsta increase as C

increases, as shown in Fig. 6. Similarly, when the pa-

rameters Q and b are Q1 = 0.7, b1 = 3.8; Q2 = 0.5,

b2 = 3.8; Q3 = 0.3, b3 = 4.2; the corresponding parame-

ters C which can make the stable circular orbits exist are

C1 ≤ 0.002 205, C2 ≤ 0.002 207, C3 ≤ 0.001 323.

Fig. 5 The behaviors of the effective potential of particle
with different C for fixed b = 4.2, M = 1, Q = 0.7.

Fig. 6 The radius of the unstable circular orbit runs
(a) and the radius of the stable circular orbit rsta (b)
of particle with different C for fixed Q = 0.7, M = 1,
b = 4.2.

3.3 Angular momentum b

Generally speaking, it is clear that there is a critical

value of b for which the geodesic equations allow a stable

circular orbit. In Fig. 7, the effective potential of the par-

ticle motion with different values of angular momentum

b is shown, where we fix parameters M = 1, Q = 0.7,

C = 0. On the one hand, We can find that
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(i) In the case of b > 3.447 102 (such as b = 4.2), there
are two extreme points corresponding to two circular or-
bits. One of them is unstable circular orbit and the other
is stable circular orbit.

(ii) In the case of b = 3.447 102, the local maximum
and minimum of the effective potential curve merge into
one inflection, which corresponds to the innermost stable
circular orbit occurring at r = 5.891 429.

(iii) In the case of b < 3.447 102 (such as b = 3.0),
the local minimum point of curve disappear, that is, no
stable circular orbits exist. Because the angular momen-
tum is too small for a test particle to make circular orbital
motion at this time.

(iv) Furthermore, as b increases, the radius of the
unstable circular orbits decrease, while the radius of the
stable circular orbits increase, as seen more explicitly in
Fig. 8.

Fig. 7 The behaviors of the effective potential of par-
ticle with different b for fixed C = 0, M = 1, Q = 0.7.

Fig. 8 The radius of the unstable circular orbit runs
(a) and the radius of the stable circular orbit rsta (b) of
particle with different b for fixed Q = 0.7, M = 1, C = 0.

On the other hand, the results obtained indicate that
(v) If b ≤ 3.977 766, the maximum values of the curve

are less than or equal to 1. When a test particle in an
unstable circular orbits is subject to any disturbance, it
either falls into the black hole or enters into bound or-
bits. In other word, the orbital types of test particle have
absorb orbits, bound orbits and circular orbits, including
stable circular orbits and unstable circular orbits.

(vi) If b > 3.977 766, the maximum value of the curve
is greater than 1, which shows that when the test particle
moves on an unstable circular orbit, once it is subject to
any disturbance, it may fall into the black hole or escape
to infinity. This indicates that the orbital types of test
particle have absorb orbits, bound orbits, circular orbits,
and escape orbits.

In Fig. 9 the effective potential of the particle motion
with different values of angular momentum b is shown,
where we fix parameters M = 1, Q = 0.7, C = 0.0002.
We can find that

Fig. 9 The behaviors of the effective potential of parti-
cle with different b for fixed C = 0.0002, M = 1, Q = 0.7.

(i) When b = 3.443 113, the curve has an inflection
point, which corresponds to the innermost stable circular
orbit with the radius rNon-Q = 5.912 654. Similarly, the
innermost stable circular orbit radius of the Schwarzschild
black hole is rSch = 6 when b = 2

√
3. It is clearly indicate

that the innermost stable circular orbit: rNon-Q < rSch.
When b = 6.392 578, the curve also has an inflection point,
which corresponds to the outermost stable circular orbit
with the radius r = 56.745 933. In both cases, orbital
types of motion do not include bound orbits, and only
include circular orbits, escape orbits and absorb orbits.

(ii) When 3.443 113 < b < 6.392 578, there are two ex-
treme points corresponding to two circular orbits. One of
them is unstable circular orbit and the other is stable cir-
cular orbit. Under this condition, the corresponding types
of orbits include circular orbits, escape orbits, bound or-
bits and absorb orbits.

(iii) As b increases, the location of the potential barrier
maximum value moves to the r-axis left, while its location
of minimum value moves to the r-axis right, that is, the
radius of the unstable circular orbit decreases, while the
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radius of the stable circular orbit increases, as shown in
Fig. 10.

Fig. 10 The radius of the unstable circular orbit runs
(a) and the radius of the stable circular orbit rsta (b)
of particle with different b for fixed Q = 0.7, M = 1,
C = 0.0002.

From the above discussion, we can see that
quintessence has an impact on the types and stability of
orbits. If there is no quintessence: when r → ∞, then
V 2
eff tends to 1. At b > 3.977 766, there are escape or-

bits. When b ≥ 3.447 102, there are bound orbits, and
in this interval, stable circular orbits appear, and the in-
nermost stable circular orbit occurring at r = 5.891 429.
If there is quintessence: when r → ∞, then V 2

eff tends

to infinity. Regardless of the value of b, the escape or-

bits exist. When 3.443 113 ≤ b ≤ 6.392 578, there are

bound orbits, and within this range, there are stable cir-

cular orbits, and the radii of the innermost and outermost

stable circular orbit are r = 5.912 654 and r = 56.745 933,

respectively. Similarly, when the parameters Q and C

are Q1 = 0.5, C1 = 0.001; Q2 = 0.5, C2 = 0.0005;

Q3 = 0.7, C3 = 0.0005; the corresponding parameters

C which can make the stable circular orbits exist are

3.436810 ≤ b1 ≤ 4.451 531, 3.447 618 ≤ b2 ≤ 5.178 742,

3.437 019 ≤ b3 ≤ 5.178 666.

3.4 Energy Levels E

We assume the test particle initial state is to fly to-

wards the black hole. In Fig. 11, from the analyze of

the previous subsections, it is shown that when the pa-

rameters take the appropriate values, the orbital types

will include stable circular orbits and bound orbits. From

Fig. 11(a), it can be concluded that although the values of

each parameter are different, their effective potential be-

havior curves are very similar. That is to say, their orbital

analyze is similar. Therefore, without loss of generality,

we take parameter M = 1, Q = 0.7, b = 4.2, C = 0.0002

as an example (as seen in Fig. 11(b)) to make a detailed

analyze. We can draw some conclusions as follows:

(i) In the case of E2 > E2
5 (such as E2 = E2

6 = 1.07),

the test particle will be swallowed by black hole starting

from a finite distance.

(ii) In the case of E2 = E2
5 = 1.058 155, the test parti-

cle may orbit on unstable circular orbit at rF = 3.728 386,

when the particle is disturbed, it may fall into black holes

or escape to infinity.

(iii) In the case of E2
3 < E2 < E2

5 (such as E2 =

E2
4 = 1.02), the test particle may have a escape orbit, it

moves to point D from infinity, then they will deflect and

fly toward infinity.

Fig. 11 (a) The behaviors of the effective potential of particle with different energy levels for fixed different
parameters. Line 1 represents C = 0.0005, b = 4.2, M = 1, Q = 0.3; Line 2 represents C = 0.0002, b = 4.2,
M = 1, Q = 0.7; Line 3 represents C = 0.0008, b = 3.8, M = 1, Q = 0.5; Line 4 represents C = 0.0015, b = 3.8,
M = 1, Q = 0.5. (b) The behaviors of the effective potential of the test particle with different energy levels when
we fix M = 1, Q = 0.7, b = 4.2, C = 0.0002.
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(iv) In the case of E2
1 < E2 < E2

3 (such as E2 =

E2
2 = 0.95), the test particle presents a bounded orbital

motion between rB = 8.445 032 (aphelion distances) and

rC = 35.997 248 (perihelion distances), respectively. On

the left side of the barrier, the particle may fall into the

black hole. On the right side of the barrier, the particle

may escape to infinity.

(v) In the case of E2 = E2
1 = 0.931 246, the test

particle will move on a stable circular orbit with radius

rA = 14.173 833.

(vi) In the case of E2 < E2
1 , the test particle may be

wallowed by black hole or escape to infinity.

4 Null Orbital Motion

In the case of null geodesics, we have that L = 0,

Eq. (8) can be rewritten as follows:

V 2
eff =

(
1− 2Mr2

r3 +Q3
− C

r3wq+1

)( b2
r2

)
. (17)

4.1 Magnetic Charge Q

From Eq. (17), one can plot the behaviors of the effec-

tive potential of photon with different Q values for fixed

b = 4.2, M = 1, C = 0.0002 as shown in Fig. 12. It

is easy to find that for any values of Q, the effective po-

tential only has one maximum value. As Q increases, the

effective potential barrier decreases and its position moves

in the direction of increasing r, which means that the ra-

dius of the unstable circular orbit increases, as seen more

explicitly in Fig. 13. At this time, the value of the in-

tersection of the effective potential curve and the r-axis

also increases, that is, the corresponding horizon radius

is increasing. In this case, the radius of the unstable cir-

cular orbit in Schwarzschild and Schwarzschild solution

surrounded by quintessence (Sch-Q) are 3.000 000, 3.000

901, respectively. Comparing the radius of circular orbit

under three spacetime conditions, we can see that for the

radius of unstable circular orbit: rSch-Q > rSch > rNon-Q.

Fig. 12 The behaviors of the effective potential of pho-
ton with different Q values for fixed b = 4.2, M = 1,
C = 0.0002.

Fig. 13 The radius of the unstable circular orbits of
photon runs with different Q values for fixed b = 4.2,
M = 1, C = 0.0002.

4.2 Positive Normalization Factor C

From Fig. 14 we can know that no matter how much C
is taken, the effective potential barrier has only one max-
imum value. In other words, only the unstable circular
orbits exist. The peak value of effective potential barrier
gets higher with b increasing. Moreover, one can conclude
from Fig. 15 that as C increases, the radius of the unstable
circular orbit increases.

Fig. 14 The behaviors of the effective potential of pho-
ton with different C for fixed b = 4.2, M = 1, Q = 0.7.

Fig. 15 The radius of the unstable circular orbits of
photon runs with different C values for fixed b = 4.2,
M = 1, Q = 0.7.

4.3 Angular Momentum b

It can be clearly seen from Fig. 16 that the change
of b is only related to the maximum value of the effec-
tive potential. When b is larger and larger, the maximum
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value of the effective potential also becomes larger, but the
corresponding r = 2.918 581 remains unchanged, that is,
the change of b does not affect the radius of the unstable
circular orbits.

Fig. 16 The behaviors of the effective potential of pho-
ton with different b values for fixed C = 0.0002, M = 1,
Q = 0.7.

4.4 Energy Levels E

Based on the previous analyze of the parameters and

Fig. 17(a), it is obvious that the shape of the effective

potential behavior curve will not change significantly re-

gardless of the values of these parameters. Therefore,

without loss of generality, we take the appropriate range

(C = 0.0002, b = 4.2, M = 1, Q = 0.7) as an example

(Fig. 17(b)) to analyze the influence of different energy

levels on photon motion.

In Fig. 17, we assume the test photon initial state is

to fly towards the black hole. Then we can obtain the

following conclusions:

(i) When E2 = E2
1 = 0.4, the test photon with suf-

ficient energy on the left side of the effective potential

barrier may fall into the black hole, while the test pho-

ton on the right side of the effective potential barrier will

escape to infinity.

(ii) When E2 = E2
2 = 0.669 884, the test photon with

sufficient energy may orbit on an unstable circular orbit

with radius r = 2.951 072. When a photon is disturbed,

the photon may fall into the black hole or escape to infin-

ity.

(iii) When E2 = E2
3 = 0.7, the test photon may fall

into the black hole.

Fig. 17 (a) The behaviors of the effective potential of photon with different energy levels for fixed different
parameters. Line 1 represents C = 0.0005, b = 4.2, M = 1, Q = 0.3; Line 2 represents C = 0.0002, b = 4.2,
M = 1, Q = 0.7; Line 3 represents C = 0.0008, b = 3.8, M = 1, Q = 0.5; Line 4 represents C = 0.0015, b = 4.0,
M = 1, Q = 0.5. (b) The behaviors of the effective potential of photon with different energy levels for fixed
C = 0.0002, b = 4.2, M = 1, Q = 0.7.

5 Conclusions

We have discussed geodesic motion in the spacetime

of the non-linear magnetic charged black hole surrounded

by quintessence. By varying the Lagrangian correspond-

ing to the metric, the orbital motion equation has been

obtained. It is concluded that the behavior curves of

non-linear magnetic charged black hole surrounded by

quintessence spacetime and de-Sitter geometry are very

similar as Q/r ≫ 1, but when Q/r ≪ 1, the behavior of

the effective potential of particle in non-linear magnetic

charged black hole surrounded by quintessence is similar

to a Schwarzschild black hole surrounded by quintessence.

Then, the effects of the magnetic charge Q, positive nor-

malization factor C, angular momentum b and energy E

on the effective potential behavior are discussed detailed

from the view of time-like and null. From the effective

potential behavior curves of different parameters with dif-

ferent values, we can see that when we consider the exis-

tence of stable circular orbits and bound orbits, although

different parameters take different values, the shape of the

effective potential behavior curve is similar, that is, the

analysis of the effective potential behavior is similar, so

we take a set of specific values as an example to illustrate.

From the perspective of magnetic charge Q, whether it

is time-like or null orbital motion, the parameter Q has

a similar effect on unstable circular radius, that is, as Q
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increases, the unstable circular radius increases. At the

same time, the value of the intersection of the curve and
the r-axis is decreasing. But for the time-like orbital mo-
tion, as Q increases, the stable circular radius decreases.

For time-like orbital motion, we fixed M = 1, Q = 0.7.
If there is no quintessence (C = 0): the escape orbits
only appear at b > 3.977 766 and the bound orbits only

occur at b ≥ 3.447 012. The radius of the innermost sta-
ble circular orbit r = 5.891 429. If there is quintessence
(C ̸= 0): the escape orbits always exist regardless of b
values. The interval in which the bound orbits exist is

3.443 113 ≤ b ≤ 6.392 578. The radius of the innermost
stable circular orbit and outermost stable circular orbit
are r = 5.912 654, r = 56.745 933, respectively. It is obvi-

ous that quintessence not only affects the types and sta-
bility of orbits, but also leads to an increase in the radius
of the innermost stable circular orbit. Compared with the

innermost stable circular orbit radius of the Schwarzschild

black hole, it clearly indicates that rNon-Q < rSch. For null

orbital motion, whatever C and b are, only unstable cir-
cular orbits exist.

As for the different energy levels to the types of or-

bit for b = 4.2, C = 0.0002, M = 1, Q = 0.7. We as-
sume the test particle initial state is to fly towards the
black hole. For time-like orbital motion, due to the differ-

ent energy levels, the orbital types include absorb orbits,
bound orbits, escape orbits, and circular orbits. Unsta-
ble circular orbit occur at rF = 3.768 282 (E2 = E2

4 =
1.055 286), stable circular orbit occur at rA = 14.169 618

(E2 = E2
1 = 0.931 239), and the bounded orbital mo-

tion shows between aphelion distances (rB = 8.438 773)
and perihelion distances (rC = 35.997 482), respectively

(at this time E2 = E2
2 = 0.95). For null orbital mo-

tion, there are only unstable circular orbit which occur at
r = 2.951 072 (E2 = E2

2 = 0.4), absorb orbits and escape

orbits, but no stable circular orbits and bound orbits.
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