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Abstract Quantum mechanical uncertainty relations are fundamental consequences of the incompatible nature of
noncommuting observables. In terms of the coherence measure based on the Wigner-Yanase skew information, we
establish several uncertainty relations for coherence with respect to von Neumann measurements, mutually unbiased
bases (MUBs), and general symmetric informationally complete positive operator valued measurements (SIC-POVMs),
respectively. Since coherence is intimately connected with quantum uncertainties, the obtained uncertainty relations
are of intrinsically quantum nature, in contrast to the conventional uncertainty relations expressed in terms of variance,
which are of hybrid nature (mixing both classical and quantum uncertainties). From a dual viewpoint, we also derive
some uncertainty relations for coherence of quantum states with respect to a fixed measurement. In particular, it is
shown that if the density operators representing the quantum states do not commute, then there is no measurement
(reference basis) such that the coherence of these states can be simultaneously small.
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1 Introduction

The Heisenberg uncertainty principle arising from in-

compatible (noncommuting) observables asserts a fun-

damental limit to quantum measurements, and is one

of the characteristic consequences of quantum mechan-

ics with deep connections to the Bohr complementar-

ity principle. Uncertainty relations, as manifestations of

the Heisenberg uncertainty principle, have been exten-

sively and intensively studied with a wide range of ap-

plications in many fields. For example, it is closely re-

lated to quantum measurement and signal processing,[1−2]

preparation of state,[3] complementarity,[4−5] entangle-

ment detections,[6−9] quantum coherence,[10−13] quantum

non-locality.[14−16] There are various quantitative charac-

terizations of uncertainty relations such as entropic un-

certainty relations,[17−20] uncertainty relations based on

variance and the Wigner-Yanase skew information,[21−25]

and so on.

Coherence is intrinsically related to superposition

which differentiates quantum mechanics from classi-

cal mechanics. In recent years, there are increas-

ing interests in quantitative studies of coherence.[26−40]

As a kind of quantum resource, coherence plays an

important role in a variety of operational applica-

tions in asymmetry,[41−45] metrology,[46] quantum key

distributions,[47] thermodynamics,[48−50] quantum com-

putation and communication.[51−53]

Since coherence of a quantum state depends on the
choice of measurements (reference bases), it is natural to
study the relations of coherence between two or more dif-
ferent measurements, or coherence of different states with
respect to a fixed measurement. In fact, there are sev-
eral investigations on uncertainty relations for quantum
coherence,[10−13] as well as the complementarity of coher-
ence in different bases.[54−55] Based on the skew informa-
tion introduced by Wigner and Yanase,[56] an information-
theoretic measure of coherence has been introduced in
Refs. [35–37] (see Sec. 2), which has an operational in-
terpretation as quantum uncertainty, in sharp contrast to
the conventional notion of variance (which usually involves
both classical and quantum uncertainties). The aim of this
paper is to employ this coherence measure to character-
ize uncertainty relations for coherence in an intrinsically
quantum fashion.

The paper is organized as follows. In Sec. 2, we es-
tablish several uncertainty relations for coherence with re-
spect to arbitrary von Neumann measurements (orthonor-
mal bases), as well as with respect to mutually unbiased
bases (MUBs). In Sec. 3, we study coherence with re-
spect to general symmetric informationally complete pos-
itive operator valued measurements (SIC-POVMs), and
derive the corresponding uncertainty relations. We obtain
some uncertainty relations for several quantum states with
respect to a common measurement in Sec. 4. Finally, we
summarize in Sec. 5.
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2 Uncertainty Relations for Coherence with
Respect to von Neumann Measurements

Let ρ be a quantum state (density operator) and Π =

{|i⟩⟨i|} be a von Neumann measurement (i.e., {|i⟩} consti-

tutes an orthonormal basis for the system Hilbert space),

then one can consider coherence of ρ with respect to Π.

In this paper, we employ the coherence measure

C(ρ,Π) =
∑
i

I(ρ, |i⟩⟨i|) , (1)

introduced in Refs. [35–37] to characterize uncertainty re-

lations. Here

I(ρ,H) = −1

2
tr[

√
ρ,H]2

is the skew information introduced by Wigner and Yanase

in 1963,[56] H is an arbitrary observable (Hermitian op-

erator). It is remarkable that the skew information en-

joys many nice properties and has several interpreta-

tions as non-commutativity (between ρ and H), quantum

Fisher information (of ρ with respect to H), asymme-

try (of ρ with respect to H), quantum uncertainty (of

H in ρ),[21−24,37−38] etc. More generally, for any POVM

M = {Mi} (i.e., Mi ≥ 0,
∑

i Mi = 1), we may define a

bona fide measure for coherence of ρ with respect to M

as[37]

C(ρ,M) =
∑
i

I(ρ,Mi) . (2)

The above measure reduces to that defined by Eq. (1)

when M is a von Neumann measurement. In general, the

measurement operators inM may not be mutually orthog-

onal projections (e.g., coherent states in quantum optics

and spin systems), and in this case C(ρ,M) generalizes

C(ρ,Π) considerably.

Let Π1 = {|ui⟩⟨ui|}, Π2 = {|vi⟩⟨vi|} be two arbitrary

von Neumann measurements, then our first result is the

following inequality

C(ρ,Π1) + C(ρ,Π2) ≥
1

2
∥[√ρ, U†√ρU ]∥2F , (3)

which may be regarded as a kind of uncertainty relations

for coherence of the quantum state ρ with respect to the

measurements Π1 and Π2. Here ||A||F = (trA†A)1/2 is

the Frobenius norm, U is the unitary operator defined by

U |ui⟩ = |vi⟩, i.e., U =
∑

i |vi⟩⟨ui|.
To prove inequality (3), we first recall a mathematical

result in Ref. [57], Remark 5.1: If one of the matrices A

and B is non-negative, then

∥[A,B]∥F ≤ ∥A∥F ∥B∥F . (4)

Similar to the method in Ref. [58], consider the decompo-

sitions of the matrices
√
ρ = X +D, U†√ρU = Y +DU , (5)

where D and DU are the diagonal parts of ρ and U†ρU

respectively. It is obvious that X, Y have zero diago-

nal elements. Then by inequality (4), the triangle in-

equality of the norm ∥ · ∥F , and the elementary inequality

x2 + y2 ≥ (x+ y)2/2 for any real numbers x, y, we have

∥[√ρ, U†√ρU ]∥2F = ∥[X +D,Y +DU ]∥2F
= ∥[X +D,Y ] + [X +D,DU ]∥2F
≤ (∥[X +D,Y ]∥F + ∥[X +D,DU ]∥F )2

= (∥[X +D,Y ]∥F + ∥[X,DU ]∥F )2

≤ (∥√ρ∥F ∥Y ∥F + ∥X∥F ∥DU∥F )2

≤ (∥Y ∥F + ∥X∥F )2 ≤ 2∥Y ∥2F + 2∥X∥2F .

Therefore

1/2∥[√ρ, U†√ρU ]∥2F ≤ ∥Y ∥2F + ∥X∥2F
=

∑
i ̸=j

(|⟨ui|
√
ρ|uj⟩|2 + |⟨ui|U†√ρU |uj⟩|2)

=
∑
i ̸=j

|⟨ui|
√
ρ|uj⟩|2 +

∑
i̸=j

|⟨vi|
√
ρ|vj⟩|2

= C(ρ,Π1) + C(ρ,Π2) ,

which completes the proof.

From an alternative perspective, we have the following

inequality

C(ρ,Π1) + C(ρ,Π2) ≥
1

2
(1− ||G||2F ) , (6)

which is also a kind of uncertainty relations for coherence.

Here G = D1TD2 with

D1 = diag(⟨u1|ρ|u1⟩1/4, ⟨u2|ρ|u2⟩1/4, . . . , ⟨ud|ρ|ud⟩1/4) ,

D2 = diag(⟨v1|ρ|v1⟩1/4, ⟨v2|ρ|v2⟩1/4, . . . , ⟨vd|ρ|vd⟩1/4) ,

T = (|⟨ui|vj⟩|) .
The derivation of inequality (6) is as follows.

C(ρ,Π1) + C(ρ,Π2)

= 1− tr
√
ρΠ1(

√
ρ) + 1− tr

√
ρΠ2(

√
ρ)

≥ 1− tr
√
ρ
√
Π1(ρ) + 1− tr

√
ρ
√

Π2(ρ)

= (D2
H(ρ,Π1(ρ)) +D2

H(ρ,Π2(ρ)))/2

≥ D2
H(Π1(ρ),Π2(ρ))/4

= (1− tr
√
Π1(ρ)

√
Π2(ρ))/2

=
(
1−

∑
ij

√
⟨ui|ρ|ui⟩

√
⟨vj |ρ|vj⟩|⟨ui|vj⟩|2

)/
2

=
1

2
(1− ∥G∥2F ) ,

where

D2
H(ρ, σ) = ||√ρ−

√
σ||2F = 2(1− tr

√
ρ
√
σ)

is the square of quantum Hellinger distance between ρ and

σ.

The first inequality in the above derivation follows

from the Kadison inequality, which states that[59] Φ(A)2 ≤
Φ(A2) for any unital and positive quantum operation Φ

and Hermitian operator A, while the second inequality is

obtained by the triangle inequality of quantum Hellinger

distance.
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Combining the above two uncertainty relations, we
have

C(ρ,Π1) + C(ρ,Π2) ≥
1

2
max{C1, C2} , (7)

where

C1 = ∥[√ρ, U†√ρU ]∥2F , C2 = 1− ∥G∥2F .

Next, we consider coherence with respect to mutually
unbiased bases (MUBs). Recall that two orthonormal
bases B1 = {|b1j⟩ : j = 1, 2, . . . , d} and B2 = {|b2j⟩ :
j = 1, 2, . . . , d} of a d-dimensional system Hilbert space
are mutually unbiased if[60−61]

|⟨b1j |b2k⟩|2 = 1/d , for all j, k .

When the dimension d is a prime power (i.e., d = pk for
a prime number p and a positive integer k), there exists a
complete set of d+ 1 MUB Bν = {|bνj⟩ : j = 1, 2, . . . , d},
ν = 1, 2, . . . , d+ 1.[60−61]

In Ref. [62], we have obtained the following exact un-
certainty relation

d+1∑
ν=1

C(ρ,Bν) = d− (tr
√
ρ)2 , (8)

for a complete set of MUBs Bν , ν = 1, 2, . . . , d+ 1. In
particular, for any pure state ρ, we have

d+1∑
ν=1

C(ρ,Bν) = d− 1 . (9)

Here we extend the above exact uncertainty relation to
any m MUBs Bν , ν = 1, 2, . . . ,m, as follows

m∑
ν=1

C(ρ,Bν) ≥ (m− 1)
(
1−

(tr
√
ρ)2

d

)
. (10)

To establish the above result, noting that[63]

m∑
ν=1

P (Bν |ρ) ≤
m− 1

d
+ trρ2 ,

where P (Bν |ρ) =
∑

j⟨bνj |ρ|bνj⟩2.
Replacing ρ with

√
ρ/tr

√
ρ and using the definition of

C(ρ,Bν), we obtain the desired inequality (10). In partic-
ular, for any pure state ρ, we have

m∑
ν=1

C(ρ,Bν) ≥
(m− 1)(d− 1)

d
. (11)

3 Uncertainty Relations for Coherence with
Respect to SIC-POVMs
In this section, we study coherence of a state with re-

spect to a general SIC-POVM, and derive some uncer-
tainty relations for coherence of a state with respect to a
family of SIC-POVMs.

Consider a d-dimensional system, let Hd be the set
of all d × d Hermitian operators and Td be the set of all
d × d traceless Hermitian operators. A set of d2 non-
negative operators P = {Pi : i = 1, 2, . . . , d2} (not nec-
essarily of rank 1) is called a general symmetric informa-
tionally complete positive operator valued measurement
(SIC-POVMs),[64] if

(i) It is a POVM: Pi ≥ 0,
∑d2

i=1 Pi = 1, where 1 is the
identity matrix.

(ii) It is symmetric: trP 2
i = trP 2

j ̸= 1/d3 for all
i, j = 1, 2, . . . , d2, and tr(PiPj) = tr(PlPm) for all i ̸= j
and l ̸= m.

Gour and Kalev have shown that there is a one-to-
one correspondence between SIC-POVMs and orthonor-
mal bases of Td in the following sense:[64] Let {Fi : i =
1, 2, . . . , d2 − 1} be an orthonormal base of Td, that is,
trFi = 0 and trFiFj = δij , i, j = 1, 2, . . . , d2 − 1. Put

F =
∑d2−1

i=1 Fi and

t0 = − 1

d2
min

{ 1

λi
: i = 1, 2, . . . , d2 − 1

}
, (12)

t1 = − 1

d2
max

{ 1

µi
: i = 1, 2, . . . , d2 − 1

}
, (13)

with λi and µi the maximum and minimum eigenvalues of
F − d(d+ 1)Fi, respectively. For any 0 ̸= t ∈ [t0, t1], take

Pi(t) =
1

d2
1+ t(F − d(d+ 1)Fi), i = 1, . . . , d2 − 1 ,

Pd2(t) =
1

d2
1+ t(d+ 1)F ,

then P (t) = {Pi(t) : i = 1, 2, . . . , d2} constitutes a general
SIC POVM. Conversely, any SIC POVM is of the above
form for some orthonormal basis {Fi : i = 1, 2, . . . , d2−1}
of Td. Take F0 = 1, then it is obvious that {Fi : i =
0, 1, 2, . . . , d2 − 1} is an orthonormal basis for the space
Hd of all Hermitian operators.

With the above preparation, we can state our result
for coherence

C(ρ, P (t)) =
d2∑
i=1

I(ρ, Pi(t))

of the state ρ with respect to the SIC-POVM P (t) =
{Pi(t) : i = 1, 2, . . . , d2} as

C(ρ, P (t)) = t2d2(d+ 1)2(d− (tr
√
ρ)2) , (14)

where t ∈ [t0, t1]. This may be regarded as an exact un-
certainty relation for the family of operators Pi(t) in the
state ρ.

To prove Eq. (14), noting that from Ref. [24], we know
that

d2−1∑
i=0

I(ρ, Fi) = d− (tr
√
ρ)2 ,

from which we have

C(ρ, P (t)) =
d2∑
i=1

I(ρ, Pi(t))

= −1

2

d2∑
i=1

tr[
√
ρ, Pi(t)]

2

= − t2

2

( d2−1∑
i=1

tr[
√
ρ, F − d(d+ 1)Fi]

2

+ tr[
√
ρ, (d+ 1)F ]2

)
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= t2d2(d+ 1)2
d2−1∑
i=1

(trρF 2
i − tr

√
ρFi

√
ρFi)

= t2d2(d+ 1)2
d2−1∑
i=1

I(ρ, Fi)

= t2d2(d+ 1)2
d2−1∑
i=0

I(ρ, Fi)

= t2d2(d+ 1)2(d− (tr
√
ρ)2) .

From the above result, we readily obtain that for arbi-
trary m SIC-POVMs P (ν)(tν), ν = 1, 2, . . . ,m, where tν is
the corresponding t constants in their representations in
terms of orthonormal bases of Td, we have

m∑
ν=1

C(ρ, P (ν)(tν)) =
( m∑

ν=1

t2ν

)
(d2 + d)2(d− (tr

√
ρ)2 .

In particular, for any pure state ρ, we have
m∑

ν=1

C(ρ, P (ν)(tν)) =
( m∑

ν=1

t2ν

)
(d3 − d)2 . (15)

These are uncertainty relations for coherence with respect
to several SIC-POVMs.

4 Uncertainty Relations for Coherence of
Quantum States with Respect to a
Common Measurement

Coherence is a relative concept involving both quan-
tum states and measurements. In the previous sections,
we have discussed uncertainty relations with respect to dif-
ferent measurements by fixing a quantum state. From a
dual viewpoint, we study uncertainty relations of different
quantum states by fixing a measurement in this section,
and obtain the following result

C(ρ,Π) + C(σ,Π) ≥ 1

2
∥[√ρ,

√
σ]∥2F , (16)

which may be regarded as an uncertainty relation for co-
herence of two quantum states with respect to a common
measurement (reference basis). Here ρ and σ are arbitrary
quantum states, and Π = {|i⟩⟨i|} is any von Neumann
measurement.

Equation (16) can be derived by decomposing
√
ρ and√

σ as Eq. (5). This shows that, if two states are not com-
mutative, then there is no measurement (reference basis)
such that the coherence of these two states can be simul-
taneously small.

We further reveal a link between uncertainty relations
for coherence and quantumness of ensembles. Consider a

quantum ensemble E = {(pi, ρi) : i = 1, 2, . . . , n} with

Q(E) = −
n∑

i,j=1

√
pipjtr[

√
ρi,

√
ρj ]

2 ,

as a measure of quantumness in Ref. [65]. Here ρi are den-

sity operators and pi ≥ 0,
∑n

i=1 pi = 1. From the above

discussion, we get that

Q(E) ≤ 2

n∑
i,j=1

√
pipj(C(ρi,Π) + C(ρj ,Π))

= 4
( n∑

i=1

√
pi

)( n∑
i=1

√
piC(ρi,Π)

)
≤ 4

√
n

n∑
i=1

√
piC(ρi,Π) .

Consequently, the weighted average of coherence
n∑

i=1

√
piC(ρi,Π)

of the quantum ensemble satisfies
n∑

i=1

√
piC(ρi,Π) ≥ Q(E)

4
√
n

.

This relation sets a lower bound to coherence in terms of

quantumness of the quantum ensemble.

5 Summary

By employing the coherence measure based on skew

information, we have derived some uncertainty relations

with respect to von Neumann measurements as well as

with respect to SIC POVMs. In the special cases of a

family of von Neumann measurements, we have consid-

ered uncertainty relations for coherence with respect to

any MUBs (not necessary two MUBs), and have proved

that the lower bound is a positive constant for pure states.

From a dual perspective, we have obtained some trade-

off relations for coherence of different quantum states and

quantum ensembles with respect to a common measure-

ment. These results imply that if two density operators

are not commutative, then there is no reference basis such

that their coherence are simultaneously small.

We emphasize that the coherence measure based on the

skew information has a natural interpretation as quantum

uncertainty,[36−37] consequently the uncertainty relations

for coherence obtained here can be regarded as genuinely

quantum uncertainty relations.
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