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Abstract
Multi-place nonlocal systems have attracted attention from many scientists. In this paper, we
mainly review the recent progresses on two-place nonlocal systems (Alice-Bob systems) and
four-place nonlocal models. Multi-place systems can firstly be derived from many physical
problems by using a multiple scaling method with a discrete symmetry group including parity,
time reversal, charge conjugates, rotations, field reversal and exchange transformations. Multi-
place nonlocal systems can also be derived from the symmetry reductions of coupled nonlinear
systems via discrete symmetry reductions. On the other hand, to solve multi-place nonlocal
systems, one can use the symmetry-antisymmetry separation approach related to a suitable
discrete symmetry group, such that the separated systems are coupled local ones. By using the
separation method, all the known powerful methods used in local systems can be applied to
nonlocal cases. In this review article, we take two-place and four-place nonlocal nonlinear
Schrödinger (NLS) systems and Kadomtsev-Petviashvili (KP) equations as simple examples to
explain how to derive and solve them. Some types of novel physical and mathematical points
related to the nonlocal systems are especially emphasized.

Keywords: multi-place physics, multi-place nonlocal systems, symmetries, integrable systems,
parity and time reversal, soliton theory, classical prohibitions

1. Introduction

The first paper on systems with discrete nonlocal places, the
nonlinear Schrödinger (NLS) equation
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where the operators P̂ and Ĉ are the usual parity and charge
conjugation, is proposed by Ablowitz and Musslimani in [1].
In literature, the nonlocal nonlinear Schrödinger equation (1)
is also called parity-time reversal (PTˆ ˆ ) symmetric (more
precisely, (1) should be called PCˆ ˆ symmetric because the
‘potential’ AB is time-dependent and PCˆ ˆ is equivalent to PTˆ ˆ
only for the potential in quantum physics is time indepen-
dent). P̂–Ĉ–T̂ symmetries play important roles in the quantum
physics [2] and many other areas of physics, such as the

quantum chromodynamics [3], electric circuits [4], optics
[5, 6], Bose–Einstein condensates [7], and so on.

Equation (1) has been studied by many authors via var-
ious traditional methods such as the inverse scattering trans-
formation, the Riemann-Chilbert approach, the Hirota’s
bilinear method, the Darboux transformations and so on
[8–20]. For instance, by the Darboux transformation, [21–23]
revealed that the defocusing nonlocal NLS (NNLS) equation
admits the exponential soliton solutions, rational soliton
solutions, and mixed exponential-and-rational soliton solu-
tions over the same nonzero background. Three such types of
soliton solutions can display a rich variety of elastic interac-
tions, in which each asymptotic soliton could be of either the
dark or antidark type. In addition to these types of soliton
solutions, with the stationary solution assumption, [24] the
general Jacobi elliptic-function and hyperbolic-function
solutions were obtained for equation (1), in which the
bounded cases obey either the PT- or anti-PT-symmetric
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relation. It turns out that the focusing NNLS equation pos-
sesses four types of bounded Jacobi elliptic-function solu-
tions, as well as the bright- and dark-soliton solutions,
whereas the defocusing NNLS equation has just two types of
bounded Jacobi elliptic-function solutions but admits no
single-soliton solution.

Notice that the model equation (1) includes two different
places x t,{ } and ¢ = - ¢ =x x t t,{ }, thus, we call all the models
including two places x t,{ } and ¢ ¢x t,{ } two-place systems or
Alice-Bob systems [25]. Two-place systems may be developed
to describe various two-place physics, which is the physical
theory to explain the correlated/entangled natural phenomena
happened at two different spaces and/or times [26].

In addition to the nonlocal NLS system (1), there are
many other types of two-place nonlocal models, such as the
NLS equations with different non-localities [27], the nonlocal
KdV systems [25, 26, 28, 29], nonlocal modified KdV
(MKdV) systems [25, 30–35], nonlocal discrete NLS systems
[36–38], nonlocal coupled NLS systems [39–45], nonlocal
derivative NLS equation [46], nonlocal Davey-Stewartson
systems [47–50], generalized nonlocal NLS equation [51],
nonlocal nonautonomous KdV equation [52], nonlocal pea-
kon systems [53], nonlocal KP systems, nonlocal sine Gordon
systems, nonlocal Toda systems [25, 26], nonlocal Sawada-
Kortera equations [54], nonlocal Kaup-Kupershmidt
equations [54] and many others [55–65].

Motivated by the AM’s work, Yan [18] first introduced
two parameters =  =  1, 1x t{ } in the vector NLS
equations such that a new unified two-parameter  ,x t( )
vector NLS equations (simply called the  

n
,x t

( ) model), con-
taining integrable/non-integrable local/nonlocal vector NLS
equations. Particularly, he first established a one-to-one con-
nection between four points (òx, òt)=(1, 1), (−1, 1), (1, −1),
(−1, −1) (or complex numbers + ix t) with    , , ,{ }
symmetries. The two-parameter idea [19] could also be
extended to many other nonlinear wave equations including
the nonlocal general vector NLS equations [43] and the mixed
local and nonlocal NLS equations [44]. Yan et. al gave the
bi- and tri-linear forms of the 

n
,x t

( ) model, solitons, double-
periodic solutions [19, 20] and rational solitons of the non-
local NLS equation. The multi-rational and semi-rational
solitons and interactions were also found for the nonlocal
two-component NLS equations [45]. It is found that the
nonlocal NLS equation with  -symmetric potentials could
support the stable solitons. By using a systematical inverse
scattering transformation and solving the corresponding
matrix Riemann-Hilbert problems for the focusing and defo-
cusing nonlocal mKdV equations with non-zero boundary
conditions at infinity, the solitons and breathers of the non-
local mKdV are obtained [66].

Motivated by the idea of Ablowitz and Musslimani for
nonlocal NLS and Yan’s two-parameter idea [18], Ji and Zhu
[67] firstly introduced a reverse space-time nonlocal modified
KdV (mKdV) equation,

+ - - + =q x t q x t q x t q x t q x t, 6 , , , , 0 2t x xxx( ) ( ) ( ) ( ) ( ) ( )

which can also be found in other references [27, 30, 68]. The
soliton solutions of (2) are studied by the Darboux

transformation [27, 67] and the inverse scattering transfor-
mation [69]. A complex form of (2), which is gauge
equivalent to a spin-like model, is studied by Ma, Shen and
Zhu [70]. From the gauge equivalence, it is found that a
significant difference exists between the nonlocal complex
mKdV equation and the classical complex mKdV equation.
Through Darboux transformation, a variety of exact solutions
for the nonlocal complex mKdV equation including dark
soliton, W-type soliton, M-type soliton, and periodic solu-
tions are derived [70]. By using a systematical inverse scat-
tering transformation and solving the corresponding matrix
Riemann-Hilbert problems for the focusing and defocusing
nonlocal mKdV equations with non-zero boundary conditions
at infinity, the solitons and breathers of the nonlocal mKdV
are first obtained [66].

Two-place nonlocal discrete models, especially the dis-
crete version of (1)

= + - + ++ - - + -q q q q q q q qi 2 , 3n t n n n n n n n, 1 1 1 1* ( ) ( )

have also attracted the attention of researcher. N-soliton solutions,
spatial periodic solutions and singular solutions for this discrete
nonlocal NLS equation are given by Ma and Zhu [71]. It is
shown that [72], under the gauge transformations, the nonlocal
focusing NLS equation and nonlocal defocusing NLS equation
are, respectively, gauge equivalent to a Heisenberg-like equation
and a modified Heisenberg-like equation. Similarly, the discrete
nonlocal NLS equation for the focusing and defocusing case
relates to a discrete Heisenberg-like equation and a discrete
modified Heisenberg-like equation. This fact significantly
impacts the possible physical applications of the nonlocal NLS
equation [73].

Two-place nonlocal NLS equations have also been
extended to some different coupled versions by many authors
[25, 39, 45]. The higher order versions of the NLS systems
such as the Sasa-Satsuma equation [74, 75], the Hirota system
and the full AKNS hierarchy [76] have also been extended to
two-place nonlocal ones.

The Davey-Stewartson (DS) equation is a well-known
(2+1)-dimensional NLS equation. Two-place nonlocal versions
of DS equation are introduced and studied by many authors
including Ablowitz and Musslimani [30], Fokas [49], Zhou [77],
Rao-Cheng-He [78], Rao-Zhang-Fokas-He [79], Rao-Cheng-
Porsezian-Mihalache-He [80], Yang-Yang [81] and Yang-Chen
[82, 83]. In [81], Yang and Yang pointed out that the solutions
of nonlocal equations including nonlocal NLS, DS, derivative
NLS, mKdV, short pulse equations, nonlinear diffusion
equations, nonlocal Sasa-Satsuma equations and many others
can be converted to local integrable equations through simple
variable transformations. In [82, 83], Yang and Chen have stu-
died the interactions among several rogue waves and the dark
and anti-dark rational traveling waves for the nonlocal DS
systems.

It is known that both the nonlocal NLS equation (1) and
the nonlocal mKdV (2) can be considered as the discrete
symmetry reductions of the usual local AKNS hierarchy. In
fact, all the nonlocal systems can be considered as discrete
symmetry reductions of multi-component local systems [25].
Thus, it is natural that the solutions of the nonlocal systems
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can also be obtained from the related multi-component local
systems via reduction method. In [76, 84], the authors
developed a reduction technique of double Wronskians to
obtain solutions to the reduced bilinear equations from those
of unreduced ones. This technique is simple and valid to both
classical and nonlocal integrable systems that allow bilinear
forms and double Wronskian solutions. In this method, one
can make use of the solutions (most of them are known) of the
unreduced bilinear equations, and obtain N-soliton solutions
for the whole hierarchy, rather than implementing reductions
solution by solution and equation by equation. This method
proves general and has applied to many nonlocal systems
(e.g. [85–88]), and the reduction idea has been generalized to
the Cauchy matrix approach [89].

In natural sciences, more than two events occurred at
different places may be correlated or entangled. To describe
multi-place problems, it is natural and important to establish
some possible multi-place nonlocal models [25, 90].

In section 2, we review two methods, the discrete sym-
metry reduction method and the consistent correlated bang
(CCB) approach, to derive some multi-place nonlocal sys-
tems. In section 3, we focus on multi-place nonlocal integr-
able systems, especially for the two-place and four-place
nonlocal NLS equations and KP equations. Section 4 is
devoted to investigating special solutions of two special two-
place and four-place KP systems. The last section is a sum-
mary with some discussions.

2. Generalized aspect to find multi-place nonlocal
systems

It is known that most of physically important local integrable
nonlinear systems such as the KdV equation, the mKdV
equation, the NLS equation and the KP equation are all
derived from real physical systems via the multiple scaling
approach (MSA). Thus, by means of MSA, we derived the
first two-place nonlocal KdV system [26] from a two-vortex
model [91] which is a special form of the (2+1)-dimensional
rotating fluid model, the Euler equation with rotation effect,
or named the nonlinear inviscid dissipative and equivalent
barotropic vorticity equation in a β-plane channel [92].
Similarly, two-place nonlocal KdV systems can also be
derived from two-layer fluid system [93]. Laterly, some other
scientists [28, 51, 52, 94] derived many other nonlocal sys-
tems like the nonlocal NLS and generalized NLS equations,
the nonlocal mKdV equation and the variable coefficient KdV
equation.

It is also known that the nonlocal NLS equation (1) and
the nonlocal mKdV (2) can be obtained from the two-
component local systems, the second and the third AKNS
hierarchy. Thus one can believe that all this types of multi-
place nonlocal systems can be derived from local multiple
component systems. In this section we focus on two simplest
methods. The first method is to find a possible discrete
symmetry group with n elements for an m component coupled

system such that the discrete symmetry reductions can be
found. The second one is to apply the so-called consistent
correlated bang (CCB) for a lower component system to get a
higher component system so that the first method can be used.

2.1. Multi-place nonlocal systems from multi-component
systems

For the m-component system

¼ = = ¼K u u u i m, , , 0, 1, 2, , , 4i m1 2( ) ( )

where = ¼K i m, 1, 2, ,i are functions of = ¼u j m, 1, 2, ,j

and their derivatives with respect to the space and time
variables = ¼ x x x t, , , ,d1 2{ }, if we can find an nth-order
discrete group

= = = ¼ - g I g gidentity, , , , 5n0 1 1{ ˆ ˆ ˆ } ( )

then one may find a suitable transformation

= ¼ = ¼u U v v v i m, , , , 1, 2, , , 6i i m1 2( ) ( )

which transforms the original equation system (4) to a new
one

¼ = = ¼K v v v i m, , , 0, 1, 2, , , 7i m1 2˜ ( ) ( )

thereafter, the -symmetry reductions can be directly
obtained with some = ¼v i m, 1, 2, ,i related to others by
suitable group elements = ¼g j n, 1, 2, ,ĵ . Usually, the
-symmetry reductions are multi-place nonlocal systems if

¹ gĵ for some j.
Here is a simple special example. It is clear that the

following integrable coupling KP system
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possesses an eighth-order discrete symmetry group

È= º   C P T P P TP, 1, , , , 9x y x y
1 1 1

ˆ { ˆ ˆ ˆ ˆ ˆ ˆ } ( )

where the operators P P,x yˆ ˆ , T̂ and Ĉ are the parity for the
space variables x and y, time reversal and charge conjugate
(complex conjugate in mathematics) defined by

= - = - = - =P x x P y y Tt t Cu u, , , , 10x y *ˆ ˆ ˆ ˆ ( )

respectively.
Using the symmetry group  , one can directly obtain the

following eight discrete symmetry reductions

s
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where p and r are related to u v w, , and z by the symmetry
reduction transformation

= + + +

= - + +

= - - -

= + + -

u p p r r

v
a

b
c c d c d p p

w b p p bd r r

z c p c p c r r
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ˆ

ˆ ˆ
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For =g C1,ˆ { ˆ}, the reductions (11) are two local
integrable coupled KP systems. For ¹g C1,ˆ { ˆ}, the reduc-
tions (11) are integrable coupled two-place nonlocal KP
systems.

2.2. Multi-place nonlocal systems from single-component
systems via CCB

To find multi-place nonlocal systems, we can also use the so-
called CCB approach proposed in [95] from lower-component
systems, say, single-component systems. There are three basic
steps for the CCB approach: (I) banging a single component
equation to a multi-component system, (II) making the
banged components correlated, and (III) requiring the corre-
lations are consistent.

For simplicity, we just take the KP equation

s+ + + =u uu u u6 0 13t x xxx x yy
2( ) ( )

as a simple example to show the CCB approach.

(I) Bang. To bang the single-component KP equation to
an m-component coupled KP system, one can make a trans-
formation = ¼ -u F u u u u, , , , m0 1 2 1( ), say,
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Substituting (14) into (13), we have
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It is clear that (15) can be banged to an m component coupled
KP system

s+ å + + + =

= ¼ -
=
-u u u u u G

i m
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0, 1, 2, , 1, 16
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j ixxx
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with m arbitrary functionals Gi under only one condition
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G 0. 17
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m

i
0

1

( )

(II) Correlation. To get some nontrivial models, we
assume that the banged fields ui are correlated each other, say,
we can write the correlation relations as

= = ¼ -u g u j m, 0, 1, 2, , 1. 18j j 0ˆ ( )

(III) Consistency. It is natural that the correlation (18)
and the banged system (16) should be consistent. Applying gk̂
on (16) for all = ¼ -k m0, 1, 2, , 1, it is straightforward to
prove that the set of the correlated operators ĝ

= ¼ - g g g g, , , , 19m0 1 2 1{ ˆ ˆ ˆ ˆ } ( )

consists of an m order finite group. Furthermore, the condition
(17) becomes

å =
=

-

g G 0. 20
i

m

i
0

1

0ˆ ( )

It is clear that if take the discrete symmetry group as
shown in (9) for m=8, then we get a four-place nonlocal
complex KP equation ( ºu p0 )

å s+ + + + =
=

p p p p p G6 0 21t x
j

g
xxx

x

yy
0

7
2

0j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )ˆ

Î =g C P T P CP T

CP P TP CP TP

1, , , , ,

, , , 22

j
x y x

y x y x y

ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ } ( )

with G0 being a solution of (20) including =G 00 as a special
trivial example.

Multi-place nonlocal systems can also be obtained from real
physical systems via multiple scaling approximations. The
detailed procedures can be found in [25, 26, 28, 51, 52, 93, 94].

3. Two-place and four-place nonlocal integrable
systems

In this section, we apply the general theory of the last section
to obtain some multi-place nonlocal extensions for several
important physical models such as the NLS and KP equations.

3.1. Two-place and four-place nonlocal NLS systems

It is known that one of the most famous NLS equation

s s+ + = = q q q qi 2 0, 1, 23t xx
2∣ ∣ ( )

is only a simple reduction of the AKNS system

s
s

+ + =

- + + =

q q q r

r r r q

i 2 0,

i 2 0, 24
t xx

t xx

2

2 ( )

by using the reduction relation =r q* because the AKNS
system (24) is invariant under the transformation CEq r,

ˆ ˆ where

=Cr r*ˆ and =E r q q r, ,q r,
ˆ { } { }.

In fact, the AKNS system (24) possesses a sixteenth-
order discrete symmetry group

È=   , 25AKNS 1 2 ( )

= E C FC CP FCP T FT TP FTP, , , , , , , , 26q r1 ,ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ} ( )

= = CE F P FP CT FCT CTP FCTP1, , , , , , , ,

27
q r2 , 1

ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ}
( )

with four second-order generators, F P CE TE, , ,q r q r, ,{ ˆ ˆ ˆ ˆ ˆ ˆ }, where
P̂ is the parity, T̂ is the time reversal, Ĉ is the charge conjugate,
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F̂ is the field reflection and Eq r,
ˆ is the exchange of the fields q

and r. F̂ and Eq r,
ˆ are defined by

= -
- =F

q
r

q
r E

q
r

r
q, . 28q r,( ) ( ) ( ) ( )ˆ ˆ ( )

From the definition (28), we know that there are two types
of discrete symmetries. The first type of symmetries (1)
exchanges the fields q and r. However, the second type of
symmetries (2) does not exchange the field variables, and thus
it cannot be used to obtain nontrivial reductions. Consequently,
the AKNS system (24) possesses the following eight nontrivial
discrete symmetry reductions

s+ + =

Î

q q q q

g C FC CP FCP T FT TP FTP

i 2 0,

, , , , , , , . 29
t xx

g2
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ˆ

Obviously, the reductions (29) include two local reductions for
=g C FC,ˆ { } and six two-place nonlocal reductions for ¹ĝ

C FC,{ ˆ ˆ ˆ}.
To get four-place NLS type nonlocal systems, one has to

study the discrete symmetry reductions for some higher
component AKNS systems. Here are two special four-
component AKNS systems
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It is clear that the coupled AKNS systems (30) and (31)
will be reduced back to the standard AKNS (23) if p=q
and s=r.

It is straightforward to find that the coupled AKNS sys-
tems (30) and (31) possess an common sixteenth-order dis-
crete symmetry group
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ˆ ˆ

ˆ ˆ ˆ ( )

In the discrete symmetry group (32), we have not con-
sidered the field reflection operator F̂ , because the sign
change of the fields has been included in the model para-
meter σ.

Four types of nontrivial and nonequivalent local or
nonlocal AKNS systems can be obtained from the reductions
of the discrete symmetry group (32).

The first type of reductions can be written from (30) as

s

s

+ + + + - =

- - + + - =

q q q q qr r q q

r r r r qr q r r

i 2 0,

i 2 0,
34

t xx
f f f

t xx
f f f

1

2
1

2

⎧
⎨⎪
⎩⎪

( )[ ( )]

( )[ ( )]
( )

ˆ ˆ ˆ

ˆ ˆ ˆ

Î = =f TC P PTC p s f q r1, , , , , , . 351
ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( ) ˆ ( ) ( )

The reduction (34) is local for =f 1ˆ , while the other three
reductions of (34) with ¹f 1ˆ are two-place nonlocal AKNS
systems.

The second type of AKNS systems obtained from (31)
reads

s

s

+ + + =

- - + =

q q q qr q r

r r r qr q r

i 2 0,

i 2 0,
36t xx

f f

t xx
f f

⎪

⎪

⎧
⎨
⎩

( )

( )
( )

ˆ ˆ

ˆ ˆ

Î = =f TC P PTC p s f q r1, , , , , , . 371
ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( ) ˆ ( ) ( )

As in the first type of reductions (34), the reduction (36) with
=f 1ˆ is the local AKNS while the others are two-place

nonlocal AKNS systems.
The third type of discrete symmetry reductions from (30)

possesses the forms

s

s

+ + + + - =

+ + + + - =

q q p q qq p q p

p p p q qq p q p

i 2 0,

i 2 0,
38

t xx
g g

t xx
g g

1

2
1

2

⎧
⎨⎪
⎩⎪

( )[ ( )]

( )[ ( )]
( )

Î = =g C T CP PT r s g q p, , , , , , . 392ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( ) ˆ( ) ( )

In this case, the local AKNS system is related to =g Cˆ ˆ , while
the two-place nonlocal AKNS reductions are corresponding
to ¹g Cˆ ˆ .

The fourth type of discrete symmetry reductions

s

s

+ + + =

+ + + =

q q q qq pp

p p p qq pp

i 2 0,

i 2 0,
40t xx

g g

t xx
g g

⎪

⎪

⎧
⎨
⎩

( )
( )

( )
ˆ ˆ

ˆ ˆ

Î = =g C T CP PT r s g q p, , , , , , , 412ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( ) ˆ( ) ( )

can be obtained from (31). When =g Cˆ ˆ , the reduction (40) is
just the well-known local Manakov system

s
s

+ + + =
+ + + =

q q q qq pp

p p p qq pp

i 2 0,

i 2 0.
42t xx

t xx

* *

* *

⎧⎨⎩
( )
( )

( )

When =g T CP PT, ,ˆ { ˆ ˆ ˆ ˆ ˆ}, the reductions of (40) are two-place
nonlocal Manakov models.

The integrability of the coupled AKNS system (30), the
nonlocal AKNS systems (34) and (38) can be guaranteed by
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the following common Lax pair

y

l

l

l

l

y=

+

- + -

- +

- - + -

s

s s

p q

r s

q p q p

s r s r

0 0

0 0

0

0

,

43

x

1

2

2
1

2

1

2

2 2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

( )

( )

( ) ( )

( ) ( )

( )

y
s

y=

+

- + -

- - +

- - + -

u p q

s r u

v q p u p q

s r v s r u

0 0

0 0
,

44

t

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

◊( )
◊( )

◊( ) ◊( )
◊( ) ◊( )

( )

where

s l

s l

º + + +

º - º + ¶

u s r p q

v sp qr

i

4
8 ,

i

2
,

i

2
2 .x

2[ ( )( ) ]

( ) ◊ ( )

The integrability of the coupled AKNS system (31), the
nonlocal AKNS systems (36) and (40) can be ensured by the
Lax pair of the two component vector AKNS system,

y
l l

s l
s l

y=
-

- -
- -

q p
r
s

0
0

, 45x

1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

y s
sl l s l s l

l l
l l

y=
- + + + +

- - - -
- - - -

46

c qr ps q q p p

r r c qr pr

s s qs c ps

i ,t

x x

x

x

1
2 2

1 1

1
2

1
2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
( )

( ) ( )

where lc, and l1 are arbitrary constants.
It is interesting that some known integrable nonlocal

NLS (or named ABNLS) systems are just the special reduc-
tions of the nonlocal AKNS systems (34), (36) (38) and (40).
For instance, taking p=q=A, s=r=B in (38), we get the
known nonlocal NLS systems (29) and some others such as
those in [1, 25, 96] and [76],

s+ + =A A A Bi 2 0, 47t xx
2 ( )

= ÎB gA g T CP PT, , , . 48ˆ ˆ { ˆ ˆ ˆ ˆ ˆ} ( )

In addition to the known nonlocal NLS reductions (47), one
can also obtain some types ofnovel local and nonlocal two-
place and four-place NLS type systems from the AKNS
systems (34), (36), (38) and (40).

It is clear that (34) allows a special reduction
= ºr q A* * and then

s+ + + + - =A A B A AA B A Bi
1

2
2 0, 49t xx * *( )[ ( )] ( )

= ÎB f A f P CT PCT, , , . 50ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )

In fact, from the coupled AKNS systems (30) and (31),
we can get 32 different types of NLS reductions. Applying the
symmetry group  to (30), we have

s+ + + + -

= =

q q q q qq q q q

p r s q q q

i
1

2
2

0, , , , , , 51

t xx
f g f g f

f g f g

( )[ ( )]

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Î =

Î =





g C T CP PT

f P CT PCT

, , , ,

1, , , . 52

c
1

1

ˆ { ˆ ˆ ˆ ˆ ˆ ˆ}
ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )

The full P̂–T̂–Ĉ symmetry reductions of (31) possess the
form

s+ + + =q q q qq q qi 2 0, 53t xx
g f f g( ) ( )ˆ ˆ ˆ ˆ

= º º º

Î =

Î =





p r s f q q gq q f gq q

g C T CP PT

f CT P CPT

, , , , ,

, , , ,

1, , , . 54

f g f g

c
1

1

( ) ( ˆ ˆ ˆ ˆ )
ˆ { ˆ ˆ ˆ ˆ ˆ ˆ}
ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )

ˆ ˆ ˆ ˆ

For the sixteen reductions (51), there are one local case
( = =f g C1,ˆ ˆ ˆ ), nine two-place cases (38) ( =f g1,ˆ ˆ
= T PC PT, ,{ ˆ ˆ ˆ ˆ ˆ}), (34) ( =g C f,ˆ ˆ ˆ = P TC PTC, ,{ ˆ ˆ ˆ ˆ ˆ ˆ}) and the
cases related to = =g Cf f P TC PTC, , ,ˆ ˆ ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ},

s+ + + + - =q q p q qr s q pi
1

2
2 0, 55t xx ( )[ ( )] ( )

= Îp r s f q f q q f P CT PCT, , , , , , , . 56* *( ) ( ˆ ˆ ) ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )

All other six cases, ( = =f P g T PT, ,{ ˆ ˆ ˆ ( ˆ ˆ ˆ )}, = =f TC g,{ ˆ ˆ ˆ ˆ
CP PT,( ˆ ˆ ˆ ˆ )}, = =f PTC g T PC, ,{ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ )})are four-place non-
local NLS equations which have not yet appeared in litera-
ture. For instance, for =g CPˆ ˆ ˆ and =f CTˆ ˆ ˆ , the related four-
place nonlocal NLS equation (51) becomes

s+ + - + -

+ - - - - =

q q q x t q qq x t

q x t q q x t

i
1

2
, 2 ,

, , 0. 57

t xx * *

*

( ( ) )[ ( )

( )( ( ))] ( )

Systems (55) and (57) are called four-place nonlocal NLS
equation because four places x t,( ), -x t,( ), -x t,( ) and
- -x t,( ) are included.

Similarly, for the sixteen reductions (53), there are one
local case, nine two-place nonlocal cases and six four-place
nonlocal cases,

s+ + +

= =

q q q qq q q

p r s f q gq f gq

i 2

0, , , , , , 58
t xx

g f f g( )
( ) ( ˆ ˆ ˆ ˆ ) ( )

ˆ ˆ ˆ ˆ

=g f T P CT CP CT P

PT CT P

, , 1, , , 1, ,

, , . 59

( ˆ ) ( ˆ ˆ{ ˆ ˆ}) ( ˆ ˆ ˆ ˆ { ˆ})
( ˆ ˆ { ˆ ˆ ˆ}) ( )

In fact, there are many other coupled (and decoupled)
integrable AKNS systems, say, the vector and matrix AKNS
systems. Starting from every coupled (and decoupled) AKNS
systems, one may obtain some possible multi-place integrable
discrete symmetry reductions.
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Here, we just list another two sets of integrable local and
nonlocal NLS type systems

a b+ + + + + =

Î Î 

q q qq q q q q qq q

f g

i 0,

, ,

60

t xx
g f f g f g f g

1 2

[ ( ) ( )]
ˆ ˆ

( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

and

a g

b d

b d

+ + + -

+ + + -

+ + - - =

Î Î 

q q q q q

q q q q q

q q q q q

f g

i

0,

, , 61

t
f

xx
f

xx

f f f g

f f g

2 2

2 2

1 2

( ) ( )

[ ( ) ( ) ]

[ ( ) ( ) ]
ˆ ˆ ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

with free parameters a b g, , and δ, where 1 and 2 are given
by (32).

It is clear that when β=0, the models (60) will be
degenerated to (53). For convenience, we rewrite (60) as

+ + =q q V qi 0, 62t xx f g, ( )ˆ ˆ

a b= + + +V qq q q q q qq , 63f g
g f f g f g f g

, ( ) ( ) ( )ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

where V f g,ˆ ˆ is clearly  f g,ˆ ˆ invariant,

= V V , 64f g f g f g, , , ( )ˆ ˆ ˆ ˆ ˆ ˆ

= f g f g1, , , . 65f g, { ˆ ˆ ˆ ˆ} ( )ˆ ˆ

For concreteness, we list all the independent NLS systems
included in (60) (i.e., (62)) below.

º C C1,ˆ ˆ invariant local NLS equation,

a b= +V qq2 . 66C1, *( ) ( )ˆ

º PC PC1,ˆ ˆ ˆ ˆ invariant two-place nonlocal NLS system,

a b= + -V qq x t2 , . 67PC1, *( ) ( ) ( )ˆ ˆ

º PT PT1,ˆ ˆ ˆ ˆ invariant two-place nonlocal NLS system,

a b= + - -V qq x t2 , . 68PT1, ( ) ( ) ( )ˆ ˆ

º T T1,ˆ ˆ invariant two-place nonlocal NLS system,

a b= + -V qq x t2 , . 69T1, ( ) ( ) ( )ˆ

P C,ˆ ˆ invariant two-place nonlocal NLS system,

a
b

= + - -

+ - + -

V qq q x t q x t

q x t q qq x t

, ,

, , . 70
P C, * *

* *

[ ( ) ( )]
[ ( ) ( )] ( )

ˆ ˆ

P PC,ˆ ˆ invariant two-place nonlocal NLS system is equiva-
lent to (70) with the exchange of the constants α and β.
PTC C,ˆ ˆ ˆ ˆ invariant two-place nonlocal NLS system,

a
b

= + - - - -

+ - - + - -

V qq q x t q x t

q q x t qq x t

, ,

, , . 71
PTC C, * *

* *

[ ( ) ( )]
[ ( ) ( )] ( )

ˆ ˆ ˆ ˆ

PTC PT,ˆ ˆ ˆ ˆ ˆ invariant two-place nonlocal NLS system is related
to (71) by a b« .

TC C,ˆ ˆ ˆ invariant two-place nonlocal NLS system,

a
b

= + - -

+ - + -

V qq q x t q x t

qq x t q q x t

, ,

, , . 72
TC C, * *

* *

[ ( ) ( )]
[ ( ) ( )] ( )

ˆ ˆ ˆ

TC T,ˆ ˆ ˆ invariant two-place nonlocal NLS system possesses
the same form of (72) after using the exchange of α and β.
TC PC,ˆ ˆ ˆ ˆ invariant four-place nonlocal NLS system,

a
b

= - + - - -

+ - - + - -

V qq x t q x t q x t

qq x t q x t q x t

, , ,

, , , . 73
TC PC, * *

* *

[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

ˆ ˆ ˆ ˆ

TC PT,ˆ ˆ ˆ ˆ invariant four-place nonlocal NLS system is
equivalent to (73) because the constants α and β are
arbitrary.
PTC PC,ˆ ˆ ˆ ˆ ˆ invariant four-place nonlocal NLS system,

a
b

= - + - - -

+ - - + - -

V qq x t q x t q x t

qq x t q x t q x t

, , ,

, , , . 74
PTC PC, * *

* *

[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

ˆ ˆ ˆ ˆ ˆ

PTC T,ˆ ˆ ˆ ˆ invariant four-place nonlocal NLS system possesses
the same form of (74) with a b« .
P T,ˆ ˆ invariant four-place nonlocal NLS system,

a
b

= - + - - -
+ - - + - -

V qq x t q x t q x t

q x t q x t qq x t

, , ,

, , , . 75
P T, [ ( ) ( ) ( )]

[ ( ) ( ) ( )] ( )
ˆ ˆ

P PT,ˆ ˆ ˆ invariant four-place nonlocal NLS system can also be
written as (75) by using a b« .

All sixteen cases of (53) can be obtained from the above
cases by setting β=0 or α=0.

The first four cases are just known results of the discrete
symmetry reductions from the usual AKNS system.

The integrability of (60) (i.e., (62)) is trivial because it is
only a special discrete symmetry reduction of the so-called (N
+M)-component integrable AKNS system (equations (104),
(105) of [97] with y y y q p t, , , , ik j k j*{ } { })

=- + å å
= ¼

= =q q a q p q

k N

i ,

1, 2, , 76
kt kxx n

N
m
M

nm n m k1 1

( )

= - å å
= ¼

= =p p a q p p

j M

i ,

1, 2, , 77
jt jxx n

N
m
M

nm n m j1 1

( )

for M=N=2 and special selections of constants anm. The
integrability of (76)–(77) is guaranteed because it is only a
symmetry reduction of the KP equation [97, 98].

It is also interesting to mention that using the P̂–T̂–Ĉ
symmetry group, one can find more discrete symmetry
reductions from all the above reduced model equations. For
instance, starting from the well-known Manakov systems
(42), one can find not only the two-place physically sig-
nificant nonlocal complex systems listed in [99], but also the
following two-place and four-place physically significant
nonlocal real nonlinear systems, we omit the details on the
similar derivation of these reductions

s+ + + + + =

Î Î

p p p p p p p

f T PT g T P PT

2 0,

, , 1, , , .

78

t xx
f f f g f g2 2 2 2[ ( ) ( ) ( ) ]

ˆ { ˆ ˆ ˆ} ˆ { ˆ ˆ ˆ ˆ}
( )

ˆ ˆ ˆ ˆ ˆ ˆ
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Especially, if =g 1ˆ , two-place models of (78)

s+ - + - + - =p p x t p x t p p x t, 4 , , 0, 79t xx
2 2( ) ( )[ ( ) ] ( )

s+ - - + - -

´ + - - =

p p x t p x t

p p x t

, 4 ,

, 0, 80
t xx

2 2

( ) ( )
[ ( ) ] ( )

can also be derived from the usual local NLS equation. Only
two independent four-place nonlocal systems exist, included
in (78),

s+ - + - + -

+ - + - - =

p p x t p x t p p x t

p x t p x t

, 2 , ,

, , 0, 81
t xx

2 2

2 2

( ) ( )[ ( )
( ) ( ) ] ( )

and

s+ - - + - - + -

+ - + - - =

p p x t p x t p p x t

p x t p x t

, 2 , ,

, , 0. 82
t xx

2 2

2 2

( ) ( )[ ( )
( ) ( ) ] ( )

3.2. Two-place and four-place nonlocal KP systems

To find multi-place nonlocal KP systems, we have to get
some multi-component coupled KP equations. To guarantee
the integrability, we start from the matrix Lax pairs for matrix
KP equations

y y sy+ + =U 0, 83xx y ( )

òy y y y+ + + - =U U U4 6 3 dx 0, 84t xxx x x y( ) ( )

where ψ is an m component vector and U is an m×m matrix.
The compatibility condition y y=yt ty of the Lax pair

reads

s s
+ + +
+ + =

U U U U UU

U W U

3

3 , 3 0, 85
t xxx x x

x yy
2

( ( )
[ ]) ( )

º - =U W UW WU W U, , . 86x y[ ] ( )

For the non-Abelian complex matrix KP system (85) with
s = = -i 1 , its PTCˆ ˆ ˆ symmetry group is constructed by
the generator operators P Txˆ ˆ and CPyˆ ˆ ,

= P T CP CP P T1, , , . 87n
x y y x{ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ} ( )

For the Abelian matrix KP system, [U, W]=0, the PTCˆ ˆ ˆ
symmetry group is the same as given in (9) with three gen-
erators P T C,xˆ ˆ ˆ and Pyˆ .

Here, we just list some special examples and the related
PTCˆ ˆ ˆ symmetry reductions.

Example 1. The Abelian matrix KP system (85) with

=

= + + = - +

= + - = - -

U

u
w u
v u
z v w u

u f g p v f g p

w f g p z f g p

0 0 0
0 0

0 0
,

1 1 , 1 1 ,

1 1 , 1 1 88

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( ˆ )( ˆ) ( ˆ )( ˆ)
[( ˆ )( ˆ) ( ˆ )( ˆ) ( )

possesses a single component PTCˆ ˆ ˆ symmetry reduction

s

+ - + + -

- - + =

p p
u

pu p p

p p p

3

4
6

3

2

3 0, 89

xt xx
f g

f g

xx
yy

2
2

2 2

⎧⎨⎩
⎫⎬⎭

[ ( )

( ) ] ( )

ˆ ˆ

ˆ ˆ

Îf g, , . 90n
ˆ ˆ ( )

Example 2. From the Abelian matrix KP system (85) with

=

= + + = - +

= + - = - -

U

u
w u
v u
z u

u f g p v f g p

w f g p z f g p

0 0 0
0 0

0 0
0 0

,

1 1 , 1 1 ,

1 1 , 1 1 , 91

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( ˆ )( ˆ) ( ˆ )( ˆ)
( ˆ )( ˆ) ( ˆ )( ˆ) ( )

we can find a PTCˆ ˆ ˆ symmetry reduction

s+ - + + =p p
u

pu p
3

4
6 3 0. 92xt xx

xx
yy

2
2

⎧⎨⎩
⎫⎬⎭ ( )

Example 3. From the non-Abelian matrix KP system (85)
with

=
+ - - +
- + + -

U
p q r q r s
p q r s r q

2 2
2 2

, 93
⎛
⎝⎜

⎞
⎠⎟ ( )

we can find a gfˆ ˆ symmetry reduction

s s+ + - - -

´ + - + - - +

+ + - + + + - =

p p q r p q r

p s p q r p q r s

p p q r s p p q r

3 3 2 2

2 2

3 2 3 2 0,

94

xt yy

x

xx xx

2
1 1

1 1 1 1 1

[( ) ( )
( ) ( ) ]

[ ( ) ( )]
( )

=p q r s p q r s, , , , , , , 95x y1 1 1 1( ) ( ) ( )

= = = = =q p r p s p f g, , , 1, 96f g f g 2 2ˆ ˆ ( )ˆ ˆ ˆ ˆ

where

Î =f g P T CP P TCP, 1, , , 97I
x y x yˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ } ( )

for KPI system (s = = -i 1 ) and

Î =f g P T C P TC, 1, , , 98II
x xˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )

for KPII system (σ=1).

For the KPI case, the reduction (94) contains one usual
local KPI reduction,

- + + = =p p p p f g3 6 0, , 99xt yy xx xx
2( ) ˆ ˆ ( )

six two-place nonlocal Abel KPI reductions

- + + + - =

= Î

p p p p p p

f g P T P C P TP C

3 6 3 0,

1, , , , 100

xt yy xx
g

xx

x y x y

2 2[ ( ) ]
ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ} ( )

ˆ
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and

- + + - =

= Î

p p p p p p

g f P T P C P TP C

3 6 2 0,

1, , , , 101

xt yy xx
f f

xx

x y x y

[ ( )]

ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ} ( )

ˆ ˆ

and six four-place non-Abelian nonlocal systems,

- + - - -

+ - + - - +

+ + - +

+ + - = =

Î ¹

p p p p p p p p

s p p p p p p p

p p p p p

p p p p p p

f g P T P C P TP C f g

3 3i 2 2

2 2

3 2

3 2 0, ,

, , , , . 102

xt yy
f g f g

f g f g f g
x

xx
f g f g

f g
xx x y

x y x y

1 1 1

1 1 1 1

1

[( ) ( )

( ) ( ) ]

[ ( )

( )]

{ ˆ ˆ} { ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ} ˆ ˆ ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

For the KPII system, we only write down two special Abelian
real two-place nonlocal reductions from (94),

+ + +

+ - - - =

p p p p

p p x y t

3 6

3 , , 0, 103

xt yy xx

xx

2

2

[

( ( )) ] ( )

and

+ + + - -

´ - - - =

p p p p x y t

p p x y t

3 6 , ,

2 , , 0. 104
xt yy xx

xx

[ ( )
( ( ))] ( )

To end this section, we write down a general vector form
of a special local and nonlocal KP system

s+ + + =

º å = " >

= = = =

Î

=

p p p P U P

P U P U p p U i j

p p p p p p p p

f g P T P P P T

3 6 0,

, 0, ,

, , , ,

, 1, , , . 105

xt yy xx xx

i j ij i j ij

f g f g

x y y x

2

, 1
4

1 2 3 4

[ ( ∣ ∣ )]

( ∣ ∣ )

{ ˆ ˆ ˆ ˆ ˆ ˆ} ( )

ˆ ˆ ˆ ˆ

The model equation (105) is a generalization of examples
given by (89) and (92).

4. Exact solutions of multi-place nonlocal KP
systems

4.1. Symmetry-antisymmetry separation approach to solve
nonlocal systems

For a second-order operator, ĝ,

=g 1, 1062ˆ ( )

one can always separate an arbitrary function, A, as a sum-
mation of ĝ-symmetric and ĝ-antisymmetric parts in the fol-
lowing way,

= + + - º +A A A A A u v
1

2

1

2
, 107g g( ) ( ) ( )ˆ ˆ

º + º -u A A v A A
1

2
,

1

2
. 108g g( ) ( ) ( )ˆ ˆ

It is clear that u and v defined in (108) are symmetric and anti-
symmetric, respectively, with respect to ĝ, i.e.,

= = -gu u gv v, . 109ˆ ˆ ( )

Thus, a two-place nonlocal system

= = =F A B B A g, 0, , 1, 110g 2( ) ( )ˆ

can be transformed to a coupled local system

= = +F u v F F gF, 0, , 1111 1( ) ˆ ( )

= = -F u v F F gF, 0, , 1122 2( ) ˆ ( )

by using (107). Therefore, to solve the nonlocal
equation (110) is equivalent to solving the local system (111)
and (112) with (108).

Similarly, a four-place nonlocal system

= =

= = = =

F p q r s q p

r p s p f g

, , , 0, ,

, , 1, 113

f

g f g 2 2

( )
ˆ ˆ ( )

ˆ

ˆ ˆ ˆ

can be changed to a coupled local system

= = + + +F u v w z F F gF f F f gF, , , 0, , 1141 1( ) ˆ ˆ ˆ ˆ ( )

= = + - -F u v w z F F f F gF f gF, , , 0, , 1152 2( ) ˆ ˆ ˆ ˆ ( )

= = + - -F u v w z F F gF f F f gF, , , 0, , 1163 3( ) ˆ ˆ ˆ ˆ ( )

= = + - -F u v w z F F f gF gF f F, , , 0, , 1174 4( ) ˆ ˆ ˆ ˆ ( )

by using the symmetric-antisymmetric separation

= + + +p u v w z, 118( )

such that

= + + +

= + - -

u p p p p

v p p p p

1

4
,

1

4
, 119

f g f g

f g f g

( )

( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

= + - -

= + - -

w p p p p

z p p p p

1

4
,

1

4
. 120

g f f g

f g g f

( )

( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

From the definitions (119) and (120), it is not difficult to find
that u is group

= f g f g1, , ,{ ˆ ˆ ˆ ˆ}

invariant, v is f̂ invariant and ĝ antisymmetric, w is ĝ
invariant and f̂ antisymmetric, while z is both f̂ and ĝ anti-
symmetric. To sum up, we have

= = =

=- = - =

=- = - =

=- = - =

f u gu f gu u

f v gv f gv v

gw f w f gw w

f gz gz f z z

,

,

,

. 121

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ( )

Hence, to solve the nonlocal equation (113) is equivalent to
solving the local system (114)–(117) with the condi-
tions (121).
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4.2. Exact multiple soliton solutions of a two-place nonlocal KP
equation

For concreteness, we study the exact solutions of the special
two-place nonlocal KP equation

s+ + + + +

= = Î

A A A B A B A

B A g P T P P P T

3

2
3 3

0, , , , . 122

xt xxxx x x yy

g x y y x

2[( )( ) ]

ˆ { ˆ ˆ ˆ ˆ ˆ ˆ} ( )ˆ

Using the symmetry-antisymmetry separation procedure,

= + = = -A u v gu u gv v, , . 123ˆ ˆ ( )

(122) is separated to

s+ + + =u u u u6 3 0, 124xt xx xx yy
2 2( ) ( )

s+ + + =v v uv v6 3 0. 125t xxx x yy
2( ) ( )

The multiple soliton solutions of the KP equation (124)
can be simply obtained by using the well-known Hirots’s
bilinear approach. The bilinear form of (124) can be written as

s y y+ + =D D D D3 0, 126x t x y
4 2 2( ) · ( )

by means of the transformation

y=u ln , 127xx( ) ( )

where the bilinear operators D D,x t and Dy are defined by

= ¶ - ¶ ¶ - ¶

´ ¶ - ¶ ¢ ¢ ¢
¢ ¢

¢ ¢= ¢= ¢=

D D D f g

f x y t g x y t, , , , .
x
m

t
n

y
p

x x
m

t t
n

y y
p

x x y y t t, ,

· ( ) ( )
( ) ( ) ( )∣

It is interesting that for the equation (125) with (127), we have
a special solution

y=v a ln 128x( ) ( )

with a being an arbitrary constant.
Though {(127), (128)} solves (124) and (125), however, to

get the solution of the two-place nonlocal KP equation (122), we
have to check the nonlocal conditions (109) for =g P P T P T,y x xˆ ˆ ˆ ˆ ˆ ˆ
and Pyˆ , respectively.

Case 1. =g P P Ty xˆ ˆ ˆ ˆ . In this case, the multi-soliton solu-
tions of the two-place KP equation (122) can be written as

y

y n h

n n s

h s

= + = ¶ + ¶

= å å

=  - - -

= + - +

n n

n

=

>

-

A u v a

K

K k k k k l k l k

k x l y k k l t

ln ,

cosh
1

2
,

3 ,

,

129

x x

j
N

j j

i j
N

i j i i j j i j j i

j j j j j j

2

1

2 2 2 2 2

3 2 1 2

⎜ ⎟⎛
⎝

⎞
⎠

( )

( ) ( )

( )
( )

{ } { }

{ }

where the summation on n n n n nº ¼ ¼, , , , ,i N1 2{ } { } should be
done for all possible permutations n = - = ¼i N1, 1 , 1, 2, ,i { } .

Case 2. =g P Txˆ ˆ ˆ . In this case, the multiple soliton
solution of the two-place nonlocal KP equation (122) still
possesses the form (129). However, the paired condition has
to be satisfied,

= =  =+ +N n k k l l2 , , . 130n i i n i i ( )

The condition (130) implies that the odd numbers of soliton
solutions in the form (129) are prohibited for the partially

inverse nonlocal system KP system (122) with =g P Txˆ ˆ ˆ . This
kind of prohibition phenomena is first found for the two-place
nonlocal Boussinesq equation [93]. Under the condition
(130), we have paired traveling wave variables

h h s h

s

º = + - +

= +

= ¼

-
+

-

k x l y k k l t

k x l y k k l t i

n

,

,

1, 2, , 131

i i i j j j n i

i i j j j

3 2 1 2

3 2 1 2

{ ( )

( )
} ( )

 

with the property

h h=P T . 132xˆ ˆ ( )

Thus, the nonlocal condition (109) is naturally satisfied
for =g P Txˆ ˆ ˆ .

For n=1 (N=2), the solution (129) with (130)
becomes

= ¶ + ¶A a Fln , 133x x
2

2( ) ( )

s s

s

= + -

´ - - -

F k l l y k l k

k x k t k l t

2 cosh 2 2 4 cosh

2 4 3 . 134

2 1 1 1 1
2

1
2

1
4

1 1
3

1
1

1
2 2

( )

[ ( )] ( )

For n=2 (N=4), the solution (129) with (130) pos-
sesses the form

= ¶ + ¶A a Fln , 135x x
2

4( ) ( )

x x
h h

t t

x s

h s

t s

s

= +
+ +
+ +
+ +
+ -

= + - +

= + - +

= + - +

´ - +

-

-

- -

- -

- -

-

-

-

-

F K g

K g

K K

K l l y

K l l y

k x l y k k l t

k x l y k k l t

k k x k k l

t k k l t

cosh cosh

cosh cosh

cosh cosh

cosh 2

cosh 2 ,

2 2 2 4 3 ,

2 2 2 4 3 ,

2 2 4 3

2 4 3 . 136

4 1,1,1, 1

1,1, 1,1

1,1,1,1 1, 1,1, 1 1

1,1, 1, 1 1 2

1, 1, 1,1 1 2

1 2 1
3

1
1

1
2 2

2 1 2
3

2
1

2
2 2

1 2 1
3 2

1
1

1
2

2
3 2

2
1

2
2

[ ( ) ( ˆ )]
[ ( ) ( ˆ )]

( ) ( )
[ ( ) ]
[ ( ) ]

( )
( )

( ) ( )
( ) ( )

{ }

{ }

{ } { }

{ }

{ }

Case 3. =g Pyˆ ˆ . In this case, the multiple soliton solution
form (129) is correct only for the conditions (130) and

=a 0 137( )

being satisfied for the two-place nonlocal KP equation with
=g Pyˆ ˆ . In other words, for the third kind of two-place

nonlocal KP equation (122), we have not yet found
Pyˆ -symmetry breaking multiple soliton solutions.

4.3. Exact multiple soliton solutions of a four-place nonlocal KP
equation

In this subsection, we study the possible multiple soliton
solutions for the four-place nonlocal KP equation (105). By
using the symmetric-antisymmetric separation relations
(118)–(120), the four-place nonlocal KP equation (105) can
be equivalent to

s
+ + + + +
+ =

+ - + -u u c u c z e v e w

u3 0, 138
xt xx xx

yy

2 2 2 2

2

( )
( )

s+ + + + =+ -v v d uv d wz v3 0, 139xt xx xx yy
2( ) ( )
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s+ + + + =+ -w w b uw b vz w3 0, 140xt xx xx yy
2( ) ( )

s+ + + + =+ -z z a wv a uz z3 0 141xt xx xx yy
2( ) ( )

with the symmetric-antisymmetric conditions (121) and the
constant relations

=   + +
+  +  +

=  - +
-  + +

=  - + -
=  + - -
= -  - +











c U U U U U
U U U U U

e U U U U U
U U U U U

d U U U U U U
b U U U U U U
a U U U U U U

,

,
2 ,
2 ,
2 .

11 12 13 14 22

23 24 33 34 44

11 12 13 14 22

23 24 33 34 44

11 13 22 24 33 44

11 12 22 33 34 44

11 14 22 23 33 44

( )
( )
( )








The system of equations (138)–(141) is not integrable for
arbitrary constants     a b c d e, , , ,{ }. For some special
fixed parameters, for instance,

= = = = =
= = = = =

+ - + - - -

+ + + -

c c e e d b
d b a a

3,
0, 6, 142( )

the four-place nonlocal equation (105) becomes

s+ + - +

+ - - - =

º + + + º º

p p p u pu

p p p p

u p p p p f P T g P

3 3 6

3

8

3

8
0,

1

4
, , ,

143

xt yy xx

f g f g

xx

f g f g x y

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ˆ ˆ ˆ ˆ ˆ

( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

while the related symmetric-antisymmetric system (138)–
(141) becomes an integrable coupling system

s+ + + =u u u u3 3 0, 144xt xx xx yy
2 2( ) ( )

s+ + + =v v uv v6 3 0, 145xt xx xx yy
2( ) ( )

s+ + + =w w uw w6 3 0, 146xt xx xx yy
2( ) ( )

s+ + + + =z z wv uz z6 6 3 0. 147xt xx xx yy
2( ) ( )

Because (145) and (146) is just the symmetry equations of
(144) and the system of equations (146) and (147) is also a
symmetry system of (144) and (145), it is not difficult to find
some special solutions of (144)–(147) and then the solutions
of the four-place nonlocal KP equation (143). A special
multiple soliton solutions of (143) can be written as

b b b b y= + ¶ + ¶ + ¶ ¶p 2 1 ln , 148y x x y xx1 2 1 2( )( ) ( )

where ψ is given in (129) with the paired condition (130)
satisfying the symmetric-antisymmetric conditions (121).
ψ=F2 with (134) and ψ=F4 with (136) are two simplest
two-soliton and four-soliton examples. The condition (130)
implies that the odd number of soliton solutions in the form
(148) are prohibited for the four-place nonlocal KP
equation (143). This kind of classical prohibition property is
firstly found for the Boussinesq system [93] and it may be
universal for partially reversal nonlocal systems. A partially
reversal nonlocal system is defined as a multi-place system
possessing at least one of the places is not fully space-time
reversal.

5. Summary and discussions

In summary, to describe multi-events happened at different
places and times, multi-place nonlocal integrable (and non-
integrable) nonlinear models have been systematically
derived by means of the discrete symmetry reductions of the
coupled local systems. Especially, various two-place and
four-place nonlocal integrable models are obtained.

Starting from every multi-component AKNS system, one
may derive some local and nonlocal multi-place AKNS, NLS
and Manakov systems. For instance, from the two-component
AKNS system (31), one can obtain the usual local AKNS
system (34) with =f 1ˆ , local NLS equation (34) with

= =f r q1, *{ ˆ }, local Manakov system (40) with =g Cˆ ˆ ,
three types of two-place nonlocal AKNS systems (34) with

¹f 1ˆ , three types of two-place nonlocal Manakov models
(40) with ¹g Cˆ ˆ , nine types of two-place nonlocal NLS
equations (62) with (67)–(72) and {α, β}={α, 0} or {α,
β}={0, α}, and six types of four-place nonlocal NLS sys-
tems (62) with (73)–(74) and {α, β}={α, 0} or{α,
β}={0, α}.

In fact, starting from every coupled nonlinear systems,
one may also find some types of multi-place nonlocal systems
via discrete symmetry reductions. In addition to the NLS
equation, the (2+1)-dimensional KP equation is another
important physically applicable model. To find some types of
multi-place extensions of the KP equation, the matrix KP
equations are best candidates. In this paper, some types of
multi-place nonlocal KP equations are obtained from the PTCˆ ˆ ˆ
symmetry reductions from some special Abelian and non-
Abelian matrix KP equations.

Because many nonlocal nonlinear systems can be derived
from the PTCˆ ˆ ˆ symmetry reductions, the nonlocal systems
may be solved via P̂–T̂–Ĉ symmetric-antisymmetric separa-
tion approach (SASA). Using SASA, the two-place nonlocal
KP equation (122) and four-place nonlocal KP system (143)
are explicitly solved for special types of multiple soliton
solutions. Similar to the two-place nonlocal Boussinesq
equation with partially space-time reversal nonlocalities [93],
the odd numbers of soliton solutions are prohibited for the
four-place nonlocal KP equation (143).

Because all the known multi-place nonlocal systems (and
their solutions) mentioned in all the references of this paper
can be considered as discrete symmetry reductions of multiple
component coupled local ones, it is natural to ask the fol-
lowing important question:

What is physically and/or mathematically new for these
kinds of nonlocal systems?

To answer this question, by summarizing all the known
results, we list some significant novel points to end this paper.

(i). Multi-place correlations. As pointed out in the title
and the introduction section, the multi-place systems
describes the correlations and or entanglements among mul-
tiple events happened at different space-times [25, 26]. Some
of two-place nonlocal systems can be used to approximately
solve the real physical problems [26, 28, 51, 52, 93, 94].
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(ii). Classical prohibitions. It is well known in the
quantum case, there are some kinds of quantum prohibitions
which have not yet found in classical physics. For partially
reversal multi-place systems, one can find that there are
classical prohibitions as mentioned in the last section for the
four-place nonlocal KP equations. For the usual local Bous-
sinesq system, there are N solitons for arbitrary positive
integer numbers and the soliton interactions may be both
pursuit interactions and head on interactions with arbitrary
wave numbers and velocities. However, for the two-place
nonlocal Boussinesq equation, the odd numbers of solitons
are prohibited, the pursuit interactions are not allowed and
only the head-on interactions with the same velocities are
permitted [93, 100, 101].

(iii). Transitions caused by nonlocality. In nonlinear
optics, it is well known that there are two different types of
materials, normal and abnormal dispersion materials. The
bright solitons can only be found in abnormal dispersion
material while the dark solitons can only be found in normal
dispersion materials. However, for the multi-place nonlocal
systems, one can find that there are possible transformations
such that the bright solitons can be changed to dark solitons
under the soliton interactions [27, 32]. Similar transitions can
also be caused by other types of nonlocalities [102, 103].

(iv). Structure modifications. Rogue waves/instantons
and lumps (more generally rational solutions) are recent
important topics [104–107]. It is known that the usual lowest
order rogue waves (lumps) possess four-leaf structure.
However, because of the introduce of the multi-place non-
localities in the model, the structure of the rogue waves and
lumps may be changed from four leaves to five leaves and six
leaves as parameter or time changes [93, 100, 101].

(v). Nonlinear excitations with special reversal symme-
tries of initial and/or boundary conditions. In [99], a nonlocal
NLS equation is obtained from a special reduction of the
Manakov system which governs wave propagation in a wide
variety of physical systems. Thus, this kind of nonlocal sys-
tems possess clear physical meanings. In fact, the general
coupled local NLS system (76) and (77) is obtained from the
well-known physically significant KP equation [97], its
reductions (62) with (66)–(75) have clear physical meanings.
If the initial conditions and/or boundary conditions possess
some types of full or partial reversal symmetries then the
related of nonlinear excitations of the original local physical
models satisfy their related reversal symmetric nonlocal
reductions.

(vi). Weaken the Hirota’s integrable sense. Usually, if a
model possesses n-soliton solutions with arbitrary n, one may
call it Hirota integrable. Almost all the integrable systems in
other senses, say, Lax integrable, are also Hirota integrable.
However, there are some special Hirota integrable examples
are not integrable under other senses. After introducing the
multi-place nonlocalities, one can find that there are infinitely
many nonintegrable systems possess n-solitons [26].

(vii). Integrable systems without n-solitons for arbitrary
n. Because of the classical prohibition property for the multi-
place nonlocal systems [93, 100, 101], we known that an

integrable (in any sense) nonlocal system may not possess n-
solitons for arbitrary n.

(viii) Mixing of linear and nonlinear waves. It is known
that the linear superposition theorem is not valid for nonlinear
systems. It is also interesting that some types of linear waves
and nonlinear waves may be linearly mixed if some kinds of
nonlocalities are introduced [93].

(ix) Existences of many first and second order integrable
systems. It is known that in local case, there are very few
integrable systems for the first- and second-order nonlinear
partial differential equations. However, if the multiple place
non-localities are considered, one can find various first- and
second-order integrable systems.

(x) New methods to solve nonlinear systems. In the study of
nonlinear multi-place nonlocal systems, in addition to the well-
known traditional powerful approaches, some new types of
methods to solve nonlinear systems have been established. For
instance, the symmetric-antisymmetric separation approach with
respect to the discrete symmetry operators can be successfully
applied to solve nonlocal systems. The full reversal invariance
method [25, 26, 108, 109] can be used to find invariant solutions
for numerous types of multi-place nonlocal systems.
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