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Abstract
Soliton molecules have become one of the hot topics in recent years. In this article, we
investigate soliton molecules and some novel hybrid solutions for the (2+1)-dimensional
generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt (gKDKK) equation by using the
velocity resonance, module resonance, and long wave limits methods. By selecting some specific
parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK
equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel
hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,
breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton
molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.

Keywords: the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt
equation, soliton molecules, hybrid solutions, velocity resonance, long-wave limit
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1. Introduction

Soliton molecules are soliton bound states, which have been
observed in some fields [1–6]. In 2012, the numerical pre-
diction of a soliton molecule in a Bose–Einstein condensate is
made. In 2017, Herink et al [7] obtained the evolution of
femtosecond soliton molecules in the cavity of a few-cycle
mode-locked laser through an emerging time-stretching
technique. In 2013, Rohrmann et al [8] studied the existence
state and stability of bound states two and three solitons in
dispersion managed fibers. Lou et al [9] theoretically obtained
(1+1)-dimensional soliton molecules and asymmetric solitons
of fluid systems by using velocity resonance in 2019. Zhang
et al [10] obtained soliton molecules, asymmetric solitons and
hybrid solutions for (2+1)-dimensional fifth-order KdV
equation in 2019. After that, Yan and Lou [11] obtained the

kink molecules, half periodic kink molecules and breathing
soliton molecules of (1+1)-dimensional Sharma–Tasso–
Olver–Burgers equation in 2020. Yang et al [12] derived
some novel soliton molecules, breather waves and lump
waves of (2+1)-dimensional B-type Kadomtsev–Petviashvili
equation by applying velocity resonance, module resonance
and long wave limit method. Based on Darboux transforma-
tion, Zhang et al [13] derived a molecule consisting of two
identical soliton waves and molecules containing a plurality
of solitons for modified KdV equation by applying velocity
resonance. Dong et al [14] obtained soliton molecules,
asymmetric solitons and mixed solutions of the (2+1)-
dimensional bidirectional Sawada–Kotera (SK) equation in
2020. So the soliton molecular problem has become one of
the most advanced problems in research.

In the field of nonlinear science, nonlinear local waves
and interaction solutions are hot topics. In recent years, many
scholars have obtained different types of new excited states
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by soliton resonances, such as lumps [15, 16], breathers
[17, 18] (caused by the module resonance of wave numbers,
say, ∣ ∣ =k k1 2, i.e. = k k2 1*), rogue wave [19] and so on. The
researchers also studied local wave interactions such as lump-
kink [20], cross-kink [21] and so on. In this work, we will
investigate soliton molecules and some novel hybrid solutions
for the (2+1)-dimensional generalized Konopelchenko–
Dubrovsky–Kaup–Kupershmidt (gKDKK) equation by using
velocity resonance, module resonance, and long wave limits
methods. The (2+1)-dimensional gKDKK equation [22] is
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where u and v are function of the variables x, y and t, and the
coefficients hi (i=1, 2, K, 8) are the real parameters. When
selecting different parameters for hi, we can obtain the
(2+1)-dimensional SK equation [23], the Caudrey–Dodd–
Gibbon–Sawada–Kotera equation [24], the Bogoyavlensky–
Konoplechenko equation [25] and the isospectral BKP
equation [26]. Obviously, equation (1) can describe many
physical phenomena. In 2016, Feng et al [22] derived the
bilinear form of equation (1), and obtained N-soliton solution,
the periodic wave solution and the asymptotic behavior of the
gKDKK equation. Liu et al [27] investigated the lumpoff
waves, lump waves, and rogue waves of the gKDKK equation
based on the Hirota’s bilinear method. Soliton solutions, lump
waves, rogue waves of the gKDKK equation have been stu-
died, but soliton molecules and asymmetric solitons for the
gKDKK equation have not been explored. So we will intro-
duce soliton molecules, asymmetric solitons and some novel
hybrid solutions for the gKDKK equation in this paper.

In section 1, we will introduce N-soliton solutions form
about the (2+1)-dimensional gKDKK equation. In section 2,
based on the velocity resonance and the soliton solution, we
obtain soliton molecules and asymmetric solitons about the
(2+1)-dimensional gKDKK equation. In section 3, by using
the N-soliton solutions, velocity resonance, module resonance
and long-wave limit, we study some novel hybrid solutions
for the (2+1)-dimensional gKDKK equation, which consists
of breather waves, lump waves and soliton molecules. We
conclude this article in section 4.

N-soliton solutions of equation (1) can be written as [22]
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where the parameters ki and pi are arbitrary constants.

2. Soliton molecules

To find soliton molecules for the gKDKK equation, we use a
novel resonant conditions ( ¹  ¹ k k p p,i j i j), the velocity
resonance:

( )w
w

= =
k

k

p

p
. 6i

j

i

j

i

j

Then we have the following expressions:

( )

= -
+ +

= -
+ +

k
h k h k h p

h k

p
p

k

h k h k h p

h k

,

, 7

i
j j j

j

i
i

j

j j j

j

3
3

1 5

3

3
3

1 5

3

or

( )

=- -
+ +

=- -
+ +

k
h k h k h p

h k

p
p

k

h k h k h p

h k

,

. 8

i
j j j

j

i
i

j

j j j

j

3
3

1 5

3

3
3

1 5

3

As we all know, for N=2 in equation (3), we can get the
two-soliton solution to the gKDKK equation. Under the
resonance condition (6), select parameter:
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We can observe that the two-soliton solution behaves as
one soliton molecule in figures 1(a) and (c). If the value of f1
and f2 changes, the distance between the solitons in the
molecule will change. Figure 1(b) shows two solitons interact,
and the symmetric solitons are transformed into asymmetric
solitons at f2=−10.

When N=4 in equation (3), k1, p1, ω1 and k2, p2, ω2

satisfy the velocity resonance condition (6), k3, p3, ω3 and
k4, p4, ω4 satisfy the velocity resonance condition (6), the
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four-soliton solution can represent two soliton molecules. We set:
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Figure 2 shows the elastic interaction characteristics of two
soliton molecules for the gKDKK equation.

3. Some novel hybrid solutions

In this section, we investigate the interaction solutions to
soliton molecules with breather and lump through velocity
resonance, module resonance, and long-wave limit method.
As far as we know, solutions to the interaction of soliton

molecules of the gKDKK equation with breather and lump
have not been studied.

When N=4 in equation (3), wk p, ,1 1 1 and k2, p2, ω2

accord with velocity resonance condition, η3, η4 accord with
module resonance condition h h=3 4 , we select this para-
meters as follows:
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f f f f

=- = - = - = - = -

=- = = = -

= + = - = - = +

= = - = =

h h h h h

k p k p

k p k p

1, 6, 1, 1, 1,

1

3
,

8

5
,

830

15
,

8 830

25
,

1

7

1

7
i,

1

8

1

2
i,

1

7

1

7
i,

1

8

1

2
i,

0, 60, 0, 0.

11

1 2 3 4 5

1 1 2 2

3 3 4 4

1 2 3 4

We can obtain the interaction between one soliton
molecule and one breather wave as show in figure 3. By
changing the value of f1, f2, we can obtain the solution to the
interaction between asymmetric soliton molecules and
breather wave in figure 3(b). We can observe that they are
elastic collisions from figure 3.

Figure 1. The solution u to equation (1) at t=0. (a) and (c) Soliton molecule structure, (b) and (d) asymmetric soliton molecule.
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Based on the N-soliton solutions, we can obtain the
interaction between the soliton molecule and a lump wave by
using the long-wave limit method. For example, when N=4,
we taking a long-wave limit k3, k4, p3, p4(  0), k1, p1, k2, p2
satisfy the velocity resonance condition, we set:
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Figure 4 exhibit the elastic collision of one soliton
molecule and one lump wave. From figure 5, we get the
asymmetric soliton molecule and one lump wave elastic
collision by changing the value of f1, f2.

For the more generalized case, in order to obtain hybrid
solutions consisting of m soliton molecules, h breather waves
and s lump waves, we can make the following restrictions on
the parameters,
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In order to show their interaction better, let us take N=6
case as an example. When N=4 in equation (3), wk p, ,1 1 1
and k2, p2, ω2 satisfy velocity resonance condition, taking a
long-wave limit k3, k4, p3, p4(  0) and η5, η6, satisfy
module resonance condition, we set
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We can get a solution for the interaction between one
soliton molecule, one breather wave and one lump wave in
figure 6(a). In figure 6(b), we can observe the interaction of
one asymmetric soliton molecule, one breather wave and one
lump wave.

4. Conclusions

In summary, we studied soliton molecules, asymmetric soli-
tons and some hybrid solutions for the gKDKK equation.
By selecting the appropriate fi, soliton molecules become
asymmetric soliton molecules. Based on velocity resonance
and module resonance conditions, we can obtain hybrid
solutions of soliton molecules and breathers waves. Based on
the resonance condition and long-wave limit method, we can
obtain the elastic collision of one asymmetric soliton mole-
cule and one lump wave. Using velocity resonance, module
resonance, and long-wave limit methods, we can get some

Figure 2. Two soliton molecules structure for equation (1) at t=0.
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Figure 3. (a) and (b) Interaction of one soliton molecule and one breather wave for equation (1) at t=−3, (c) and (d) interaction of
asymmetric soliton molecule and one breather wave at t=−3, f2=−10.

Figure 4. The elastic collision of one soliton molecule and one lump wave for equation (1).
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Figure 5. The elastic collision of one asymmetric soliton and one lump wave for equation (1).

Figure 6. (a) and (b) Elastic collision of one soliton molecule, one breather wave and one lump wave for equation (1) at t=−3, (c) and (d)
elastic collision of one asymmetric soliton molecule, one breather wave and one lump wave at t=−3, f1=0, f2=−10.
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hybrid solutions, which is composed of soliton molecules,
asymmetric solitons, lump waves and breather waves. They
are also elastic collisions. At the same time, we find out the
generalized constraints for obtaining these hybrid solutions,
which include m soliton molecules, h breather waves and s
lump waves. We hope that the results of this paper can pro-
vide valuable information about the study of mathematical
physics.
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