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Abstract
Water waves are one of the most common phenomena in nature, the studies of which help
energy development, marine/offshore engineering, hydraulic engineering, mechanical
engineering, etc. Hereby, symbolic computation is performed on the Boussinesq–Burgers
system for shallow water waves in a lake or near an ocean beach. For the water-wave
horizontal velocity and height of the water surface above the bottom, two sets of the bilinear
forms through the binary Bell polynomials and N-soliton solutions are worked out, while two
auto-Bäcklund transformations are constructed together with the solitonic solutions, where N
is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are
different from those in the existing literature. All of our results are dependent on the water-
wave dispersive power.

Keywords: lakes and ocean beaches, shallow water waves, Boussinesq–Burgers system,
symbolic computation, bilinear forms through the binary Bell polynomials, Bäcklund
transformations, solitonic solutions

Water has been known as a constant reminder that life
repeats and the only element that has a visible cycle [1]. The
water cycle has been believed to result in the distribution of
water on land surface, to purify water, to support plant
growth, to facilitate agriculture and to sustain aquatic eco-
system [2]. Water waves have been seen as one of the most
common phenomena in nature, the studies of which help the
energy development, marine/offshore engineering, hydraulic
engineering, mechanical engineering, etc [3–10]. On the
water waves, each year, hundreds of papers have been pub-
lished, a few of which, e.g. are [3–10] recently. More recent
nonlinear-physics contributions have been seen as well
[11–13].

For the propagation of shallow water waves in a lake or
near an ocean beach, people have investigated the

Boussinesq–Burgers system [14–19],
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where x and t are the normalized space and time, the sub-
scripts denote the partial derivatives, the differentiable func-
tion u=u(x, t) represents the horizontal velocity, and the
differentiable function v=v(x, t) denotes the height of the
water surface above the bottom level [16], while β is a real
constant representing the dispersive power [15].

For system(1), finite-band solutions have been investi-
gated with the help of the Lax representations of some sta-
tionary evolution equations [14], rational solutions have been
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obtained via the bilinear method and Kadomtsev–Petviashvili
hierarchy reduction [15], non-auto-Bäcklund transformations,
nonlocal symmetries, conservation laws and interaction
solutions have been constructed [16], Darboux transforma-
tions and multi-soliton solutions have been presented
[17, 18], bilinear form and multi-soliton solutions have been
studied [19]. By the way, other issues related to system(1)
have been seen [20–28].

However, to our knowledge, Bell-polynomial invest-
igation on the bilinear forms and N solitons for system(1) has
not been carried out, where N is a positive integer. Auto-
Bäcklund-transformation work on system(1), which is dif-
ferent from that in [16], has not been discussed, either. In this
paper, we will briefly review the Bell-polynomial concepts.
With the binary Bell polynomials and symbolic computation
[29] we will work out the bilinear forms for system(1), which
are different from those in [15, 19], and N solitons for
system(1), which are different from those in [15–19]. Also
with symbolic computation, we will construct two auto-
Bäcklund transformations with some soliton features. Con-
clusions will come out last.

Let us begin the work with the Bell-polynomial pre-
liminary: Bell polynomials have been said to provide a rela-
tively-direct way to get the bilinear forms for certain
nonlinear evolution equations, instead of the dependent
variable transformations [30–32]. References [30–32] have
presented the following:

• The two-dimensional Bell polynomials:
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References [33–35] have linked the Y polynomials to the
Hirota D operators as
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where f (x, t) and g(x, t) are the ¥C functions of x and t, while
Dx and Dt are the Hirota D operators defined by
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with ¢x and ¢t being the formal variables.
Hereby, through the binary Bell polynomials, we need to

work out the bilinear forms and N solitons for system(1).
To begin with, what is reported in [19] can be considered

as a special case of our results in this part.
Similar to the work in [36, 37], the scaling transforma-

tion,
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where ϒ1, ϒ2, ϒ3 and σ are all the real constants. With the
substitution of assumptions(8) and the assumptions that
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back into system(1), Bell-polynomial procedure and sym-
bolic computation help us to reduce assumptions(8) to
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and then to convert system(1) into two sets of the coupled

systems of the Y polynomials:
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Further, with
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we transform system(1), through systems(10), into the fol-
lowing two branches of bilinear forms with the binary Bell
polynomials:
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The reason for the existence of two branches of bilinear
forms(12) is that there appear the ‘±’ signs.

It is noted that bilinear forms(12) are different from
those in [15, 19].

Expanding f (x, t) and g(x, t) in bilinear forms(12) with
respect to a small parameter ò as
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ς, ϖ, i and j being the positive integers with ς�N, ϖ�N,
i�N and j�N, ωiʼs and κiʼs denoting the real constants,

( )Vf x t, ʼs and ( )vg x t, ʼs being all the real differentiable

functions of x and t, ai and bi representing the parameters
characterizing the i-th soliton, ai σ > 0, bi σ > 0, the sum
åm m =, 0,1i j

taken over all the possible combinations of μj=0,1

while ( )å <i j
N

1 being the summation over all the possible pairs
chosen from the N elements under the condition i<j.

It is noted that there exist two branches of N-soliton
solutions(14) because of the ‘±’ signs. Both of the branches
are dependent on β, the water-wave dispersive power.

It is also noted that N-soliton solutions(14) are different
from those in [15–19].

Our next goal should be auto-Bäcklund transforma-
tions(17)–(25), which are different from those reported in [16],
and the relevant soliton features for system(1), to be seen below.

For system(1), we need to consider the Painlevé expan-
sions in the form of the generalized Laurent series [38, 39] (and
references therein), i.e.

( ) ( ) ( ) ( ) ( )åf f=
x

x
x-X

=

¥

u x t x t u x t x t a, , , , , 15
0

( ) ( ) ( ) ( ) ( )åf f=
c

c
c-

=

¥
v x t x t v x t x t b, , , , , 15

0

and to balance the powers of f at the lowest orders, so as to get

( )= X = 2, 1, 16

where Ξ and are the natural numbers, uξʼs, vχʼs and f are all
the analytic functions with ¹u 00 , ¹v 00 and f ¹ 0x .

With symbolic computation, we will truncate Painlevé
expansions(15) at the constant level terms [38, 39], as
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and substitute expansions(17) into system(1). Then, we
require that the coefficients of like powers of f vanish, and
see the Painlevé–Bäcklund equations:
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Hereby, u1(x, t) and v2(x, t) can be treated as the seed
solutions for system(1) [38, 39]. The sets of equations (17)–
(25) constitute two auto-Bäcklund transformations, since
there exist the ‘±’ signs, and the whole sets are mutually
consistent, or, explicitly solvable with respect to f(x, t), u0(x,
t), u1(x, t), v0(x, t), v1(x, t) and v2(x, t), to be seen right below.

Each of auto-Bäcklund transformations(17)–(25) works
as a system of equations relating a set of the solutions of
system(1), e.g. one set of solutions(27) or (28), to another
set of the solutions of system(1) itself. Therefore, we could,
in principle at least, be able to progressively construct more
and more complicated solutions of system(1).

Each of auto-Bäcklund transformations(17)–(25) is
dependent on β, the water-wave dispersive power.

We will try to find the explicitly-solvable soliton exam-
ples, assuming that
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where ζl(t)ʼs (l=1, ..., 7) are the real differentiable functions,
with ( )z ¹t 01 since f ¹ 0x .

With symbolic computation, we substitute assump-
tions(26) into equations (18)–(25), and work out
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There exist two cases, ζ1(t) ≠ constant or ζ1(t) = constant.
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where z ¹ 08 , ζ9, ρ1, ρ2 and ρ3 are all the real constants.

Computing with expressions(17) as well, we can obtain
the following β-dependent soliton solutions of system(1):
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There exist two branches of those solutions because of the ‘±’

signs.
Case (2):ζ1(t)=η1=non-zero constant
Similarly, we can obtain the following β-dependent

solitonic solutions of system(1):
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where η2 and η3 are also the real constants. There exist two
branches of those solutions because of the ‘±’ signs.

Right now, let us finish up the paper. Water has been
known as a constant reminder that life repeats and the only
element that has a visible cycle. The water cycle has been
believed to result in the distribution of water on land surface, to
purify water, to support plant growth, to facilitate agriculture and
to sustain aquatic ecosystem. Water waves have been seen as
one of the most common phenomena in nature, the studies of
which help the energy development, marine/offshore engineer-
ing, hydraulic engineering, mechanical engineering, etc. Hereby,
on system(1), the Boussinesq–Burgers system for the shallow
water waves in a lake or near an ocean beach, symbolic com-
putation has been performed. For u(x, t), the water-wave hor-
izontal velocity, and v(x, t), the height of the water surface above
the bottom, two sets of the bilinear forms through the binary Bell
polynomials, i.e. bilinear forms(12), and N-soliton solu-
tions(14) have been worked out, while two sets of auto-Bäck-
lund transformations(17)–(25) have been constructed together
with solitonic solutions(27) and (28). It has been noted that
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bilinear forms(12), N-soliton solutions(14) and Bäcklund
transformations(17)–(25) are different from those in the existing
literatures. All of our results have been shown to be dependent
on β, the water-wave dispersive power.
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