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Abstract

®

CrossMark

The drying of liquid droplets is a common daily life phenomenon that has long held a special
interest in scientific research. When the droplet includes nonvolatile solutes, the evaporation of
the solvent induces rich deposition patterns of solutes on the substrate. Understanding the
formation mechanism of these patterns has important ramifications for technical applications,
ranging from coating to inkjet printing to disease detection. This topical review addresses the
development of physical understanding of tailoring the specific ring-like deposition patterns of
drying droplets. We start with a brief introduction of the experimental techniques that are
developed to control these patterns of sessile droplets. We then summarize the development of
the corresponding theory. Particular attention herein is focused on advances and issues related to
applying the Onsager variational principle (OVP) theory to the study of the deposition patterns
of drying droplets. The main obstacle to conventional theory is the requirement of complex
numerical solutions, but fortunately there has been recent groundbreaking progress due to the
OVP theory. The advantage of the OVP theory is that it can be used as an approximation tool to
reduce the high-order conventional hydrodynamic equations to first-order evolution equations,

facilitating the analysis of soft matter dynamic problems. As such, OVP theory is now well
poised to become a theory of choice for predicting deposition patterns of drying droplets.
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1. Introduction

The drying of water droplets on window glass after it has
rained is commonly observed in daily life. Droplets drying
looks like a simple problem, but shows surprisingly compli-
cated fundamental science, including evaporation, particle
convection, contact line (CL) motion, etc. When the droplets
are laden with nonvolatile solutes and evaporate on a solid
surface, this phenomenon becomes even more complex
because versatile deposition patterns of solutes are left on the
substrate. To understand the dynamics of the drying of liquid
droplets and to tailor or control the final deposition pattern has
not only held a special interest in scientific research, but
important applications in inkjet printing [1-3], microelectronic
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device manufacturing [4] and even medicinal diagnostics
[5, 6]. As Larson pointed out in his review published in
Nature that ‘In modern times, a world of physical chemistry
can similarly be observed by watching a droplet dry’ [7], the
drying of liquid droplets has spawned thousands of publica-
tions, which lie at the crossroad of physics, chemistry, mate-
rials science and even biology. In this topical review, we will
give brief descriptions of the scientific advances in the
understanding of droplets drying. We will first review the
versatility of the deposition patterns, mainly about ring-like
patterns, of drying sessile droplets that were observed in
experiments. Then, we show the recent development of the
theoretical studies of the drying of liquid droplets based on the
Onsager variational principle (OVP) theory.
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Figure 1. Schematic diagram of experimentally observed deposition
patterns of drying droplets: (a) coffee-ring; (b) mountain-like;

(c) volcano-like; (d) multi-ring; (e) eye-like; (f) spoke-like, which are
the density distribution of solutes left on the substrate after droplet
drying.

1.1. Ring-like patterns in experiments

In 1997, Deegan et al reported that a spilt droplet of coffee leaves
a circular ring, rather than a uniform spot after drying on a coffee
mug [8]. This is known as the famous coffee-ring phenomenon.
Inspired by this seminal work, other ring-like patterns have been
subsequently reported, including mountain-like [9-11], volcano-
like [12, 13] and even multi-ring patterns [14, 15]. Besides ring-
like patterns, a large number of complicated deposition patterns
have recently been found in experiments, such as eye-like [16],
finger-like [17], spoke-like [18] and spiral patterns [19], as
shown in figure 1. As a special topical review, we hereafter
review the formation mechanism of the ring-like deposition
patterns in terms of both experimental and theoretical aspects.

The coffee-ring pattern, figure 1(a), is usually observed in
our daily life, where most solutes are deposited along the initial
perimeter of the droplet. Deegan [8, 20] first pointed out that
the formation mechanism of coffee-ring is the combined effects
of the pinning of the CL and the evaporation-induced fluid flow
inside the droplets. When the CL is pinned, the direction of the
height-averaged fluid flow inside the droplet is from the droplet
center to the edge. Such convection flux causes the nonvolatile
solutes to accumulate and then deposit in the area around the
CL, forming the coffee-ring pattern. In recent years, the utili-
zation and suppression of the formation of coffee-ring has been
applied to many aspects of industrial production [1, 21] and for
more details one can refer to another recent review [22].

On the other hand, a freely moving CL leads to a moun-
tain-like deposition pattern, where most of the solutes deposit at
the center of the droplet [figure 1(b)]. Pauchard and Allain [23]
studied the drying of a water/polysaccharid Dextran droplet on
a clean glass slide. They found that when the polymer

concentration is around 0.20 g/ml and the relative humidity
about +5%, a mountain-like deposition pattern is left on the
slide. Later, Willmer et al [9] studied aqueous poly(ethylene
oxide) solution droplets drying on glass substrates. They also
obtained the mountain-like deposition pattern and found that the
radius of the deposition pattern continuously increased to the
size of the droplet’s initial radius by increasing the concentra-
tion of polymer. Besides the solute concentration, Li et al [11]
found that the wetting characteristics of the droplet solution
with respect to the substrate, i.e. the contact angle hysteresis
(CAH), is another important factor in obtaining the mountain-
like pattern. With a weak CAH substrate (such as a silica glass
or polycarbonate substrate for the water droplet), the CL freely
recedes and forms the mountain-like deposition pattern.

When the moving ability of the CL is in between the
pinned and freely moving cases, volcano-like patterns are
observed, of which the peak of the density distribution of the
deposited solutes is located between the droplet center and its
initial perimeter, as shown in figure 1(c). Kajiya er al [12]
studied the drying of a water-poly(N, N-dimethylacrylamide)
PDMA droplet on a glass substrate and observed a volcano-
like deposition pattern. They showed that the location of the
peak approaches the initial perimeter as the equilibrium
contact angle of the droplet increases by using different glass
slides as the substrates. They explained the volcano-like
pattern based on the mobility of the CL. They showed that
both the CL and solutes move from the droplet edge to the
center. However, the CL moves faster than the solutes,
forming the volcano-like deposition pattern.

When the CL has a stick-slip motion, the deposits form
concentric rings called a multi-ring deposition pattern, as shown
in figure 1(d). In these cases, the droplet CL is first pinned,
generating a flow from the droplet center to its edge. This flow
convects solutes to the boundary and deposits them near the
CL. This process is similar to the formation of the coffee-ring.
The difference is that as the droplet volume decreases, the
contact angle decreases and creates an inward unbalanced force
acting on the CL. When the contact angle becomes less than the
receding contact angle, the CL starts to slip and move quickly
towards the center accompanied by the increase of the contact
angle. The CL keeps receding until the contact angle increases
to its equilibrium value. The repetition of this stick-slip motion
of the CL forms the multi-ring deposition pattern.

In 1995, even earlier than the observation of the coffee-
ring, Adachi et al [24] observed the multi-ring pattern in the
drying of water-polystyrene particle droplets on borosilicate
glass plates. Later, Deegan et al [25] also found such inter-
esting deposition patterns in the drying of the same droplets
on mica, but with a different solute size of the polystyrene
particle (0.1 um). Figure 2(a) is the experimental results of the
multi-ring pattern found in the evaporation of deionized
water-DNA droplets on glass surfaces. An interesting
phenomenon is that the multi-ring pattern is made of a solid
circle surrounded by many concentric rings. Besides sessile
droplets, confined evaporation systems can also generate the
multi-ring deposition pattern. In figure 2(b), Xu et al [14]
obtained these patterns when a solution evaporated on the
sphere-on-flat geometry, where the solution is made by poly
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Figure 2. Examples of multi-ring patterns through the evaporation of droplets. (a) Typical DNA stain patterns with multi-ring formation.
Reprinted figure with permission from [15]. Copyright (2020) the American Physical Society. (b) MEH-PPV ring patterns in a sphere-on-flat
configuration. Reprinted figure with permission from [14]. Copyright (2020) the American Physical Society.
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Figure 3. (a) Sketch of the essential core part of the geometry of every deposition process where material is left behind by a moving CL
of suspension or solution with a volatile solvent. Reprinted from publication [27]. Copyright (2020), with permission from Elsevier.

(b) Schematic of a droplet with axis-symmetry in a cylindrical coordinate system (side view). Relevant parameters are the radius of the CL R
(1), height of the droplet at the center H(f), contact angle 6(¢), evaporation rate J(r, f) and profile of liquid-vapor interface A(r, f).

[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-
PPV) (MW = 50-300 kg/mol) and toluene.

It is clear that the final deposition pattern is mainly
determined by the motion of the CL. Many experimental
conditions, including the evaporation rate, viscosity of the
solution, wetting property of the substrate, etc, can affect this
motion. Various combinations of these factors result in ver-
satile deposition patterns. In fact, we are far from discovering
all the possible droplet deposition patterns [26].

1.2. Conventional hydrodynamic theory of drying droplets

In this subsection, we briefly review the development of the
conventional hydrodynamic theory of drying droplets. We
will review the basic theoretical framework. Some simple
reduced scale theories are also reviewed here, to give fun-
damental understanding of this complex problem.

The deposition pattern is the density distribution of non-
volatile solutes left on the substrate after droplets have dried.
Figure 3(a) describes the process of the deposition. The solutes
are convected to the CL by the evaporation-induced fluid flow
and then left behind as the CL recedes. Therefore, the fluid
flow inside the droplet and moving ability of the CL are two
crucial factors in determining the final deposition pattern.
Calculating the flow velocity and motion of the CL during
evaporation is the main task of theoretical models of drying.

For simplicity, common assumptions used in the theory
are that a sessile droplet has axis-symmetry in a cylindrical
coordinate, as shown in figure 3(b), and the solutes have the
same height-averaged radial velocity as the solvent [25, 28].

The latter assumption is valid for droplets where the size of
the laden particles is large enough to neglect its diffusion, and
on the other hand, it should be small enough to neglect the
sedimentation (vertical motion) [25] . Once we have the
velocity field of the evaporation-induced fluid flow, we have
the motion of all solutes.

It is known that the fluid flow inside the droplet is
determined by the shape evolution of the droplet, which is
often described by the liquid/vapor interface profile h(r, 7).
According to the conservation of mass [equation (1)], the time
evolution of A(r, ) can be obtained if the radial velocity field
u,(r, t) and the evaporation rate J(r, f) are given.

O _ Oh )2
or)

ot

_ 1 9(rhu,)
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—J(r, 1 1+( ey

r

Let us consider the J(r, 1) first. The evaporation process
of droplets has been studied both experimentally and theo-
retically for many years. Various evaporation models have
been proposed in theory [20, 27, 29], including J = Jy, J = Jy
and J = Jyexp(—Ar?), where J, and A are the phenomen-
ological constant. Usually, the evaporation rate can be
obtained by the vapor-liquid diffusion model [30, 31].

First, the distribution of vapor concentration c(r, f) can be
solved by the diffusion equation,

Jdec
ot

= DVZe. 2)

The time required for the water concentration in the vapor
phase to respond to the droplet shape evolution is of the order
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Figure 4. Contour plot of the vapor concentration distribution above
a droplet of radius R = 1 mm and height s, = 0.364 mm. Parameters
used in the FEM method are vapor diffusivity D = 26.1 mm?/s,
relative humidity H = 0.40 and saturated vapor concentration on the
droplet surface ¢, =232 x 10" % g / mm°. Gray bars represent the
vapor concentration in g/ mm?®. Reprinted with permission from [31].
Copyright (2020) the American Chemical Society.

of R? /D, where R is the droplet contact radius and D is the
diffusion constant of the vapor in the air. Hu ef al [31] pointed
out that when the ratio of R’ /Dty=c,(1 —H)/p is small
(where, #;is the lifetime of the droplet, and c, is the saturated
vapor concentration), the evaporation process can be regarded
as a quasi-steady process. Then, equation (2) reduces to
VZc =0, with the following boundary conditions,

r<R
r>R
r=00 =00

z=h(r) c=ygc,
z=0 J=0,

¢ =H,c,, 3)
where H, is the relative humidity. The finite element method
(FEM) [31] has been used to solve this problem to obtain the
vapor concentration at time t, c(r, f). Figure 4 is a typical
solution of the density distribution of c(r, f). Once we have
the c(r, t), the evaporation rate J(r, f) can be obtained by the
equation, J(r, f) = DVc.

Besides the FEM calculations of the evaporation rate,
Deegan et al [20, 31] analyzed the evaporation of spherical-
cap droplets by mimicking the problem to the calculation of
the electrostatic potential of a charged conductor with a
similar droplet shape. They obtained an analytical expression
of the evaporation rate,

J(r, 1) = Jo(B)(1 — 7O, “)
where the rescaled 7 is defined as r/R and 0(¢) is the droplet
contact angle. Both Deegan et al and Hu et al have compared
this analytical evaporation rate with the full numerical results
and showed that this can be a good approximation of J(, f)
when the droplet contact angle is between 0° and 90°. The

detailed forms of the parameters used in equation (4) are,
1 0

NG P
@) S T (@)
To(0) = W(o.zw2 + 1.30)
T 2
X (0.6381 - 0.2239(9 . Z) ) )

Given the evaporation rate, the velocity field of the fluid
flow inside the droplet can be obtained by solving the con-
tinuity and Navier-Stokes equations. For the quasi-steady
process, the inertia term can be neglected. Then, the equations
in a cylindrical coordinate are,

100u) | ou;

=0, 7

r Or 0z ™
010 0%u OP

O(L9 ) 4 e} 2 9P 8

77(ﬁr(r ﬁr(m ))+ 812) or ®
1 0 ( Ou, 0%u, opP

—_ 4— = —, 9

n(r 8r(r or ) 072 ) 0z ©)

where u, is the vertical velocity, 7 is the liquid viscosity and P
is the pressure inside the droplet. Hu and Larson [32]
numerically solved the set of equations and obtained the full
velocity field including vertical and radial velocities, as
shown in figure 5, providing an intuitive image of the flow
field inside the droplet.

It is difficult to obtain an analytical solution of the full
model mentioned above. Assumptions have been applied to
the full model for special cases to obtain analytical solutions.
When the droplet contact angle is small, the lubrication
approximation can been applied to reduce the model by
ignoring the vertical velocity u,. The reduced model was
given as [33, 34]:

Oh(r,n) _ 119

(rh3(r, 1) OP(r 1)
ot 3nr or or

) —J(r, 1), (10)

where the OP/0r is the gradient of the pressure, which cor-
responds to the form of A(r, f). Then, the time evolution of the
profile h(r, f) and the radial velocity field u(r, f) can be
obtained by the combination of equations (1) and (10). As the
solutes are assumed to have the same velocity as the solvent,
the density distribution of the solute, ¢(r, f), can be obtained
by the mass conservation equation,

11

00N _ 1L hou,).
r or

ot

(1)

Experiments observed two special evaporation modes of
drying droplets: the constant contact angle (CCA) and the
constant contact radius (CCR) modes, where either the con-
tact angle or contact radius is nearly unchanged during
evaporation. For these two cases, analytical solutions of the
radial velocity can be obtained. Deegan et al [20] combined
the global mass of conservation [equation (12)] and the
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Figure 5. Streamline plots of the evaporation-induced fluid flow inside the droplets from the FEM for droplets with a contact angle of (a) 40°
and (b) 10°. Reprinted with permission from [32]. Copyright (2020) the American Chemical Society.

spherical-cap assumption [equation (13)],

dv R ’ T _ k / 17
E*j; dr27rrh(r,t)ffo dr2ar'J (', 1)
a 2
x \/1 +(Wh("’ t)) , (12)
r
o = [[HG D Rz)z RO g
’ 20(0, 1) 2h(0,1)

Then, the dimensionless height-averaged radial velocity i, is
derived as:

N S S O N SR

gl U (1= ).
Equation (14) can be inserted in equation (11) directly and
further analysis can be conducted.

In conclusion, the conventional hydrodynamic theory has
been mostly based on the conservation law and N-S
equations. Under the basic framework, the main task is to
solve the high-order partial differential equations (PDEs)
[equation (10)] either analytically or numerically. It is worth
mentioning that even more complicated conditions such as
drying on a porous substrate [33], drying with a receding CL
[27, 28] and drying with a non-uniform temperature system
[35, 36] have also been studied in recent years.

Besides theory, simulations such as the Monte Carlo (MC)
[37—43], molecular dynamics (MD) [44—46], density functional
theory (DFT) [43, 47-52] and the lattice Boltzmann method
(LBM) [53-59] are also used to study the drying of liquid
droplets. Simulations such as experiments can provide some
insight into these problems, which is very useful to construct
the theoretical model. A detailed review of the simulation of
drying droplets was given by Thiele er al [43].

(14)

7

2. OVP theory of drying droplets

In this section, we will review the OVP theory of the evapora-
tion process and the formation of the deposition pattern of
drying droplets. We show how such a theoretical framework can
be formalized and the essential physics underlying this drying
problem. We further show that such a simple theory can be used

as the basis of MC simulation to predict deposition patterns in

high dimension and even for cases without radial symmetry.
For a soft matter system, we can usually choose a set of
parameters x = (x;, xp, ---, X,) to describe the state of the
system. If it is a force free system, i.e. the dissipation force is
balanced by the potential force, then the time evolution of the

system can be obtained as:
= G0 — AW _

j 8)Ci

0, (15)

where A(x) is the free energy of the system and (;(x) the
associated frictional coefficient. The second term of
equation (15) represents the potential force driving the system
to its equilibrium state, while the first term is the frictional
force resisting this change.

In 1931, Onsager noticed that many phenomenological
equations for the time evolution of non-equilibrium systems
have the same structure as those of particle-fluid systems
[60, 61]. Then, with the Onsager’s reciprocal relation (j; = (j,
we can construct time-evolution equation (16), by minimizing
the Rayleighian function,

1 OA
RO x) = =D iy + D —Xis (16)
2 ij i Qxi

where %Z (%i%; is the dissipation function ®, which is equal

to half of the energy dissipation taking place in the system per
unit time. Therefore, for a given soft matter dynamic problem,
we can first construct a Rayleighian function,

R0 x) = (5 x) + A %), 7)

which contains the energy dissipation function ¢ and the time
change rate of the free energy A of the system. Then, the
evolution equations are obtained by,

OR/0%; =0, (18)

where i =1, 2, ..., f stands for the f system characterizing
variables.

This theoretical framework is useful to construct not only
conventional hydrodynamic equations, but some unknown
evolution equations for complex soft matter problems [62, 63].
These dynamic equations are usually high-order partial dift-
erential equations, which require complicated numerical



Commun. Theor. Phys. 73 (2021) 047601

Topical Review

solutions. In recent years, Doi and co-workers found that the
OVP theory can be used as a tool of approximation to derive
first-order evolution equations of non-equilibrium systems.
Such simple models simplify the numerical calculations or can
even be solved analytically, bringing insightful fundamental
understanding of non-equilibrium systems.

We use the sessile droplet as an example of how we use
the OVP theory to study non-equilibrium problems. For a
liquid droplet evaporating on the substrate, we consider R(f)
as the droplet contact radius and H(f) as the height in the
center. The surface profile is described by h(r, ) at time ¢,
which is the same as figure 3(b).

Applying the lubrication approximation, the energy dis-
sipation due to the fluid flow inside the droplet can be written as:

o=1L | o324y, (19)
2 Jo h

where 7 is the liquid viscosity and v(r, ?) is the height-averaged
velocity of the fluid at position r inside the droplet.

The free energy F'is the sum of the interfacial energy:

R
F = (yLs — Ysv)7R? +7ij; 2rr1 + KZdr

- ’yLVﬂRZQE
2

where ' = 0Oh/0r and |h/| < 1 when droplets have a small
contact angle. The surface tension of liquid/vapor, substrate/
liquid and substrate /vapor are v, vs. and sy, respectively.
We first show that minimizing the Rayleighian function
without any assumption is a systematic way of constructing
the corresponding conventional hydrodynamic equation.
The height-averaged velocity satisfies the conservation law,

h= —lg(rvh) —J.

r or

R
+ 7va mrh/2dr, (20)
0

21

Then, the time change of the free energy can be obtained
from equations (20) and (21) as:

. R ol10( Oh
F=-2 — ——|r— hv)dr, 22
WLVWfO 8r[r 8r(r8r)](r v)dr 22)

where we have dropped all terms that do not depend on v, since
we only need to minimize it later with respect to v. Then, the
Rayleighian function is given by the addition of equations (19)
and (22). We minimized it with respect to v, resulting in:

2
o L lﬁ(r@) . (23)
3n Or|ror\ Or

Inserting the expression v(r) into equation (21), the mass
conservation equation becomes,

h= _Mi[mri(lg(,ﬁ%))] — 7.

(24)
3nr Or or\r or Or

We therefore obtained the droplet shape evolution equation,
which is the same as the conventional hydrodynamic
equation (10).

Actually, we can follow the same procedure to construct
most conventional hydrodynamic equations and even for
problems when we do not know their dynamic equations.

These hydrodynamic equations are usually high-order partial
differential equations that require complicated numerical
solutions. The OVP theory can be further used as an
approximation to reduce high-order PDEs to first-order
dynamic equations. Then, the numerical solutions become
much simpler and even analytical solutions can be obtained.

The droplet drying model equation (24) can be simplified
by introducing an assumption that the droplet has a parabolic
profile when the contact angle 6 is small. The surface profile
now becomes,

r2
h(r, t) = H(t)(l - F)' (25)

With this assumption, the volume of the droplet has the form
V= %’H'HRZ and the contact angle 6 of the droplet can be

written as 0 = 4V/7R’.

For the entire evaporation process, the volume change
rate V (¢) is known to be proportional to the contact radius
R(@),

v = i,
Ry

(26)

where V,, and R, are the initial values of V(¢) and R(r). We
assume a homogeneous evaporation rate [64],
4
7R’

It is worth noting that a realistic evaporation rate should
be a spatial function of r and can even be divergent at the CL.
Although this homogeneous evaporation rate is used to sim-
plify the model, the series of works reviewed here showed
that ignoring the position dependence of the evaporation rate
is reasonable in the study of the ring-like deposition patterns
of drying droplets. However, if one wants to study more
complicated deposition patterns or focus on the shape evol-
ution of drying droplets, a spatially dependent evaporation
rate has to be used.

Combining equations (21), (25), (26) and (27), we can
solve v(r) as:

R V R H
viny=rl———|=rl— - —|
R 4V 2R 4H
Inserting the expression of A(r, t) and v(r) into the dissipation
function, we have:
R_V‘r

T4y

J = 27)

(28)

P = WRﬁhydro(R (29)
where the hydrodynamic friction parameter &pyaro =3C/10,
C =1In(R/2¢) — 1 and € is the molecular cutoff length.

On real surfaces, there is an extra energy dissipation due
to the CL motion, which should be considered in the dis-
sipation function,

1 .
By = Egdzmmrez, (30)
where & is a phenomenological parameter representing extra
friction due to the surface roughness and other sources of
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Figure 6. Droplet shape evolution for evaporation on frictionless substrate for three situations: (a) 6y < 6,, (b) 0y =0, and (c) 6y > 0..
Corresponding evolution of the CL r/ry is shown in panel (d) and the contact angle 6 is shown in panel (¢). For all calculations, 6, = 0.8 and

key = 0.001. Reproduced with permission from [65].

dissipation. Combining equations (29) and (30), the total
dissipation function is written as:
RV

1 : o,

o = sz[Eghydm(R - W] + 55“ RZ], (31

We now turn to the free energy of the system. As we

choose R and V as the slow variables, the free energy will be

written as a function of the two slow variables. By assuming a

parabolic form of the droplet interface profile, the free energy
now has an explicit expression:

1

> szeg). (32)

4y?
F = — +
’YLV( R+

Accordingly, the time change rate of the free energy becomes,

. 16V? 25 ) $1%4%
The Rayleighian function now becomes,
% = 27R| L¢ R—RV2+1§ ?
) hydro 4V ) cl
16V? ; $1%4%
+ ’YLV(__S + 7T9§R)R +v—r7 (34)
TR .

With this Rayleighian function, we can obtain the droplet
shape evolution and deposition patterns.

2.1. Shape evolution equations of evaporating droplets

The droplet shape evolution is described by R and 6, which
can be obtained from the above Rayleighian function. The
time evolution of contact radius R(f) is obtained by

OR/ OR = 0. Combined with the evaporation  rate,
equation (26), we can write down the set of evolution
equations of the system in a scaled form [64]:

1
. 2 Vi 0(0* — 62
(1 + ka)rogk = —— 0 VOO = 0) = 55
4R,V 6Ckev 0,
¥ =~ 36)
Ry
4V (1)
@) = , 37
=0 (37)
where 7., = —V;/Vj is the evaporation characteristic time

1
and 7, = NV / YL 02 is the relaxation time.

Here, we define k., = 7. /7y to represent the evapora-
tion rate and k. = £,0/3Cn to describe the moving ability of
the CL. It is clear that the set of equations (36), (37) and (38)
are just first-order ordinary differential equations. It will be
much easier for the numerical solutions than the conventional
hydrodynamic equations, i.e. high-order PDE, equation (10).

We notice that the parabolic assumption [equation (25)]
is only valid when 6, is small, and cannot be used to study
droplets with a large contact angle. In a recent work [65],
Jiang et al used a spherical shape of the droplet liquid-vapor
interface and set the radius of sphere R and contact angle 6 as
the slow variables. By using the OVP theory, they obtained
the equation of R and 6. Therefore, this model can be used to
study the droplet shape evolution during evaporation for
droplets with equilibrium contact angle 6, from 0 to 7/2.
(figure 6 shows the droplet shape evolution of a droplet with
0. =0.8). Based on the full model, various evaporation modes
can be obtained. It is interesting to note that for special cases
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Figure 7. (a) and (b) are the profile of the deposits left on the substrate when the drying is completed. Transition from coffee-ring to volcano-
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map of the transition from coffee-ring to mountain-like pattern. Reprinted figure with permission from [64]. Copyright (2020) the American

Physical Society.

such as CCA and CCR, analytical results can be derived for R
and 6.

2.2. Deposition patterns

After obtaining the droplet shape evolution, we now discuss
how to calculate the deposition patterns. Moreover, we will
show that the dynamic model from the OVP theory can also
be used for the MC simulations of deposition patterns for
high-dimensional and two-droplet systems.

We assume that the velocity of the solute is the same as
the solvent given by equation (28). As we now know the
velocity of solutes, we can trace the position of solutes first
located at r of any time ¢, 7(r, t). If at time #, the solute is
out of the droplet, 7 = R(#;), the solute deposits at this time
and at the location of 7(rg, t;). According to the mass
conservation of particles, the concentration p can be cal-
culated as:

2mrodry
2rFdi

where ¢, is the homogeneous concentration at the
initial time.

Therefore, p[7(ro, t;)] gives the final density distribution
of the deposited solutes on the substrate. In a short summary
that when 7(ro, t;) = R(t;), solute with an initial position ry
deposits at time #; and at the position of R(f;). The final
deposition pattern is described by u[7(ro, ;)]

A series of works about the study of deposition patterns
of drying droplets have been conducted by using the above-
mentioned theoretical framework. In [64], Man and Doi
clarified how the CL friction (described by k) and the eva-
poration rate (described by k.,) affect the final deposition
pattern. Figure 7 shows that the deposition pattern changes

w7 (ro, D] = h(ro, 0)dy (38)

continuously from a coffee-ring to volcano-like and to
mountain-like as the k. increases. When k. = 100, the CL
hardly moves from the initial position and the coffee-ring
pattern appears. On the other hand, when k4 =0, the CL
recedes freely and a mountain-like pattern appears. Especially
when the evaporation rate is fast (k., > 1), the model reduces
to a simple form and an analytical expression of the peak
position of the pattern r, can be obtained as:

1
2(1+k¢p
rp = Ry 7]%1 1 .
2kg + 1

This theoretical prediction has been confirmed by a later
experiment [66].

Instead of taking k. as constant, Wu et al [67] assumed
that it has two values, a low value for freely moving CL and a
high value for pinned CL, written as:

(39)

- ,
kc1={0 for 8 < Oz or 6 > 0, 40)

a for @ > O or 8 <0,

where 6 is the receding contact angle (the angle below which
the CL starts to recede) and « is a constant representing the
CL moving ability. Then a stick-slip motion of the CL can be
obtained by carefully choosing the value of «. They obtained
various multi-ring deposition patterns of a drying droplet and
pointed out that the coffee-ring and mountain-like deposition
pattern can be regarded as a multi-ring pattern. The coffee-
ring pattern is a multi-ring pattern with an infinite large inter-
ring spacing, while a mountain-like pattern is a multi-ring
pattern with an O inter-ring spacing, as shown in figure 8. In
addition, [67] shows that as the ring radius decreases and
below a critical value (the innermost ring radius) the multi-
ring is replaced by a solid-circle pattern. An analytical
expression of the radius of this solid circle in terms of
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American Chemical Society.

experimental parameters has been given as:

2003V3/3 key

Or > 6.,
TR 062 — 0%)
fs = 8CV2/ %k @D
20 ey Or < 0.,
7TR09€

where 6, = 6, /~/2 in that model.

Later, Wu et al [68] proposed an extended model based
on the OVP theory for the drying of liquid droplets of sur-
factant solutions. Surfactants can change the droplet liquid/
vapor surface tension,

v =0y — kgTTa ln(l + %) 42)
where 'V?N is the surface tension of the solvent without sur-
factants, kg is the Boltzmann constant, T is the temperature,
I' is the maximum surfactant surface concentration and !
is the Langmuir constant. As the surface tension now is a
function of the surfactant concentration, the added surfactant
can change the motion of the droplet CL, either hindering
droplet receding or facilitating droplet spreading. Corre-
spondingly, the deposition pattern can change from mountain-
like to volcano-like to coffee-ring by increasing the surfactant
initial concentration, as shown in figure 9(a), providing
another way to control the deposition pattern. They also
showed that when the CL motion undergoes a clear receding-
advancing transition, a double-ring pattern is formed, as
shown in figure 9(c). It is worth noting that this two-ring
pattern is induced by adding surfactants into the droplet,
which is different to the stick-slip mechanism of the formation
of the multi-ring pattern mentioned above.

The model is not limited to the single-droplet system and
can be extended for the study of the drying of two droplets.
Hu et al [69] studied the drying of two neighboring droplets,
focusing on the corresponding deposition patterns. The two
droplets evaporate simultaneously and each affects the

evaporation of the other. Therefore, the evaporation rate does
not have axis-symmetry anymore and an asymmetric eva-
poration rate J(r, f) has to be used,

+ Je(’C - XC),
Xe

where J, is an input parameter characterizing the asymmetry
of the evaporation rate and x, is the location of the droplet
center. Due to the asymmetric evaporation rate, the eva-
poration-induced fluid flow does not have axis-symmetry as
the single-droplet case anymore. Instead, an x-direction flow
is induced, as sketched in figure 10(a). Correspondingly, new
deposition patterns including fan-like and eclipse-like patterns
are obtained by the authors, as shown in figures 10(b)—(d). In
this work, as the axis-symmetry of the fluid flow is broken,
one has to use an MC simulation to calculate the deposition
patterns, of which the sample evolution is governed by the
dynamic equation derived from the OVP theory.

V(1)

100 = g

(43)

3. Perspectives and conclusion

We gave detailed descriptions of how to use the OVP theory
to construct a conventional hydrodynamic equation of drying
droplets. Moreover, we also showed how to use the OVP
theory as an approximation tool to reduce a high-order PDE
to the first-order ordinary equation of drying droplets. The
OVP theory can be treated as a systematic way to study non-
equilibrium problems in soft matter. How to choose the
proper slow variables of a given problem is one of the key
challenging issues in applying this theory. Some extension of
the model given in this review can be used to tackle these
various problems, like the drying of droplets that contain
different shapes of solute particles and the drying of thin film.
Wang et al [70] have taken into account the contact angle
hysteresis (CAH) based on the model in [64] and analyzed the
effects of the CAH on the coffee-ring deposition. Xu et al
[71] employed the OVP theory to derive the evolution
equations of a mixture of binary fluid thin film. We believe
that besides droplet systems, the drying of thin films and the
corresponding deposition patterns can be well studied by the
OVP theory reviewed here.

In 2011, Yodh et al [72] pointed out that the coffee-ring
effect can be suppressed by shape-dependent capillary inter-
actions. In the experiments, they dried water drops containing
a suspension of micrometer-sized polystyrene spheres stret-
ched asymmetrically to different aspect ratios. Results
showed that droplets laden with sphere particles form coffee-
ring patterns, but with ellipsoidal particles can form uniform
thin film, as shown in figure 11(a). It is clear that the shape of
the solute particles provides a new way to control the
deposition patterns. Besides particle shape, Patil er al [73]
proved that particle size can also change the patterns. When
ambient temperature is T, =27°, smaller monodispersed
colloidal polystyrene particles (dp=0.1, 0.46 and 1.1 ym)
form mountain-like deposits on the wet-oxidized silicon sur-
face after the water dried, whereas larger particles
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Figure 9. (a) shows the effect of a surfactant in the deposition patterns. When the initial surfactant concentration [ is increased, the deposition
pattern changes from mountain-like to volcano-like and then to coffee-ring pattern. All parameters are k. = 0, ke, = 0.002 and a = 1.0.
(b) and (c) are the formation of the two-ring deposition pattern; (b) is the evolution of the profile of the surface and (c) is the evolution of
the density distribution of solutes left on the substrate, u(r, 1)/(Hopo). For (b) and (c), key = 107* ky=0, a=0.3 and ([ =0.1. Reprinted
with permission from [68]. Copyright (2020) the American Chemical Society.
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Figure 10. (a) is the sketch map of the influence of the existence of asymmetric evaporation rate J, in the evaporation-induced fluid flow
inside the droplet. (b), (c) and (d) are the asymmetric deposition patterns calculated by the MC simulation. (b) Fan-like deposition is

obtained when k. =0 and an asymmetric volcano-like deposition pattern is obtained when k. = 10. (c) Eclipse-like deposition pattern is
obtained when k. = 50. For all the calculations 0, = 6y = 0.2, At/7e, = 107>, ko, =0.001 and J, = 0.3. Adapted with permission from [69].

Copyright (2020) the American Chemical Society.

(dp=3 pum) left ring formation. Indeed, it is similar to
mountain-like deposition where particles concentrate in the
center. When the radius of droplets is beyond the capillary
length, we have to consider the effect of gravity on the
deposition patterns [74, 75]. This effect is especially impor-
tant when droplets are on inclined surfaces, which has been
discussed both theoretically and experimentally [76, 77].
From recent experimental studies, we can generally
identify two new factors in tailoring the final deposition
pattern of drying droplets. First, the properties of the solute
can largely affect the final deposition pattern. We may include
these effects by adjusting the diffusion coefficient in the
model. The second one is the effect of gravity. This effect can
be inserted into the model by introducing an extra term into
the free energy. Then, one can analyze the effect of gravity on

10

the fluid flow inside the droplets and see this effect in the final
deposition patterns. The development of the OVP theory in
soft matter is still at the beginning stage. Various successful
examples of using this theory to deal with dynamic problems
are still needed to enrich the understanding of the OVP
theory.

In this review, we have shown the theoretical framework
of the formation of the deposition pattern of drying droplets.
By using the OVP theory proposed by Lars Onsager, the
high-order conventional hydrodynamics equations can be
reduced to first-order evolution equations, which provides us
with a new way to understand these complex problems and
makes the physical picture clearer. Based on the evolution
framework, the formation mechanism of different ring-like
patterns has been analyzed and explained. The purpose of this
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Figure 11. Images of the final distributions of ellipsoids (a) and
spheres (b) after evaporation. Coffee-ring pattern changes to a
uniform thin film by replacing the spherical solutes with ellipsoidal
solutes, while all other experimental conditions remain the same.
Reprinted by permission from [72], Copyright (2020).

review is to introduce the background of the research on
deposition patterns and also review the recent development of
the OVP theory in drying droplets. We hope that this short
review can help readers who are interested in this problem
and especially help readers to build their own models of soft
matter dynamic problems of interest.
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