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Abstract
The current mathematical model explains the influence of non-linear thermal radiation on the
Casson liquid flow over a moving thin needle by considering Buongiorno’s nanofluid model.
The influences of Stefan blowing, Dufour and Soret effects are also considered in the model. The
equations which represent the described flow pattern are reduced to ordinary differential
equations (ODEs) by using apt similarity transformations and then they are numerically solved
with Runge—Kutta-Fehlberg’s fourth fifth-order method (RKF-45) with shooting process. The
impacts of pertinent parameters on thermal, mass and velocity curves are deliberated graphically.
Skin friction, rate of heat and mass transfer are also discussed graphically. Results reveal that, the
increase in values of Brownian motion, thermophoresis, Dufour number, heating and radiative
parameters improves the heat transfer. The increasing values of the Schmidt number deteriorates
the mass transfer but a converse trend is seen for increasing values of the Soret number. Finally,
the escalating values of the radiative parameter decays the rate of heat transfer.

Keywords: moving thin needle, Brownian motion and thermophoretic diffusion, non-linear
thermal radiation, Stefan blowing condition
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Nomenclature x, 1) Directions

R(x) Shape of thin needle (u, v) Components of Velocity
P Stream function Dt Thermophoretic diffusion co-efficient
Cy Skin friction coefficient o} Thermal diffusivity
fm Velocity profile p Density of base fluid

k Thermal conductivity I Dynamic viscosity

Rey Local Reynolds number (pCp) Heat capacitance

Dg Brownian diffusion coefficient T Fluid temperature

N Radiative parameter Cc Fluid concentration

v Kinematic viscosity Du Dufour number

Pr Prandtl number T Fluid mean temperature
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Dy, Mass diffusivity coefficient

Cs Nanoparticle concentration susceptibility
k* mean absorption coefficient

Ny Brownian motion parameter

M thermophoresis parameter

0, heating parameter

Sc Schmidt number

s Stefan blowing parameter

A Velocity ratio parameter

5% Casson parameter

Nu Nusselt number

Shy Sherwood number

o* Stefan-Boltzman constant

Ty Surface temperature

T, Ambient temperature

Cy Surface concentration

Cu Ambient concentration

U = U, + U, Composite velocity

0(n) Temperature profile

T Ratio of effective heat capacity
c Needle thickness size

Sr Soret number

Kr Thermal diffusion ratio

C, Particular heat at uniform pressure
x () Concentration profile

1. Introduction

The boundary layer stream with thin needles has extensive
applications in biomedical and engineering fields. For
example, it is generally used in a protected thermocouple to
calculate wind velocity, hot wire anemometer, wire coating
and circulatory problems. Recently, Mabood et al [1] exam-
ined the consequences of chemically reacting cross stream of
non-Newtonian fluid through a thin moving needle. Souayeh
et al [2] deliberated the non-linear thermal radiation impact on
the Casson liquid flow through a needle with thermophoresis
and Brownian motion. Ramesh et al [3] examined the hybrid
nanoliquid flow through a needle. Xiong et al [4] illustrated
the dissipative flow of cross nanofluid past an upright thin
needle. Kumar et al [5] deliberated the particle deposition on
the Casson liquid flow past a thin moving needle.

Due to an increase in industrial and technological uses in
recent years, the non-Newtonian liquid flow is attracting the
attention of more researchers. For example, if a person uses non-
Newtonian liquids as coolers or heat exchangers, the required
suction capacity can be greatly reduced. The characteristics of
non-Newtonian liquids are different from those of the viscous
liquid. Non-Newtonian liquid levels are relatively uneven and
more complex compared to Newtonian liquids. In the literature, it

is sometimes said that in many aspects, the Casson model is
better than that of the standard visco-plastic model for rheological
data entry. Therefore, it becomes the preferred rheological model
of blood and chocolate. Recently, Ramesh et al [6] analysed the
steam of Casson liquid past an extending sheet with Catteneo-
Christove heat diffusion. Ibrar et al [7] explicated the influence of
thermal radiation on Casson fluid stream with suspension of
nanoparticles through a thin needle. Hamid [8] deliberated the
viscous-ohmic dissipative stream of Casson fluid past a thin
needle with nanoparticles suspension. Kumar ez al [9] explicated
the Casson and Carreau nanofluid streams with porous medium.
Khan et al [10] pondered the Casson liquid flow through a
stretchy surface with radiation effect.

Brownian movement and thermophoresis are the methods of
mass and heat transfer of small particle movements in the form of
thermal decay and concentration gradients which affect the small
particles associated with bulk surfaces. The thermophoresis and
Brownian movements are important factors in heat and mass
transfer problems. It is widely used in various fields such as
nuclear safety systems, aerospace, hydrodynamics, aerosol tech-
nology, and air pollution. In recent days, several researchers
deliberated the thermophoresis effect and Brownian movement
on the liquid flow through diverse surfaces. Hussain and Ahmed
[11] studied the flow of liquid through a porous enclosure by
using Buongiorno’s nanofluid model. Khan et al [12] scrutinized
the Brownian motion and thermophoresis effects on nanoliquid
stream through a microchannel with a radiation effect. Jayade-
vamurthy et al [13] explicated the bioconvective stream of hybrid
nanofluid through a moving rotating disk by considering ther-
mophoresis and Brownian motion effects. Khan et al [14] utilized
Buongiorno’s nanofluid model to deliberate the non-Newtonian
liquid stream through stretchy surface. Hayat er al [15] explored
the non-Newtonian liquid flow by using thermophoresis and
Brownian motion effects.

The importance of radiation plays a vital role in many
physical problems. Radiation is a heat transference process
that distributes heat energy through fluid particles. The impact
of radiation on the stream of liquids reflects a major char-
acteristic of engineering and many industrial developments
including high temperatures, such as the production of paper
plates, freezing of metal fragments, the manufacture of elec-
trical chips, and fuel pumps. Recently, Hussain [16] discussed
the dissipative flow of fluid with radiation effect. Sheikho-
leslami et al [17] scrutinized the impact of thermal radiation
on nanoliquid stream. Mehmood et al [18] expounded the
radiative flow of nanoliquid by means of KKL-model. Khan
et al [19] inspected the radiative stream of non-Newtonian
liquid with nanoparticles suspension. Gowda et al [20]
explicated the radiative stream of second grade nanofluid.

In many cases, it has been observed that there is a high
concentration of extracellular species that can cause the
impact of a blow. The idea of the impact of blowing comes
from Stefan’s problem. Stefan flow refers to the movement of
the effects of chemical reactions from the scattering of species
on the visual connector which can create a blowing effect.
This explosion effect can occur in an inert position and is
therefore completely different from the suction effect on the
wall associated with the injection in open areas. The concept
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of wall injection is presented in the Stefan problem and was
first investigated by Spalding [21]. Encouragement of the
Stefan blowing constraint on a stream of nanofluid past a
solid rotating stretchy disk was scrutinised by Latiff et al [22].
Amirsom et al [23] numerically explained the stimulation of
Stefan blowing on the convective stream of nanoliquid past a
thin needle with microorganisms. Alamri et al [24] schema-
tically depicted the significance of Stefan blowing on the
Poiseuille nanofluid flow over the parallel plates. Lund et al
[25] reported a model for studying the impact of Stefan
blowing on the Casson nanofluid stream in the occurrence of
radiation effect.

The thermal-diffusion (Soret) effect is the mass transfer
caused by a thermal gradient. The Diffusion thermo effect,
also known as the Dufour effect, is the energy flux produced
by a composition gradient. The Soret-Dufour effects are
generally smaller in magnitude than the effects defined by
Fourier’s and Fick’s rules, and they are often ignored in mass
and heat transport phenomena. In addition, the Dufour and
Soret effects in the presence of thermal radiation have prac-
tical uses in solar power technology, electrical power gen-
eration, high temperature systems, nuclear reactors, and many
other fields. Recently, Hayat et al [26] deliberated the Dufour-
Soret effects on radiative flow of second grade liquid above
an elastic sheet. Khan er al [27] explicated the Dufour-Soret
effects on convective flow of Carreau—Yasuda fluid. Imtiaz
et al [28] expounded the Dufour-Soret effects on flow of
viscous liquid past a curved elastic surface. Jawad et al [29]
elucidated the radiative flow of liquid with Marangoni con-
vection and Dufour-Soret effects.

Inspired by literature mentioned above, this study
investigates the impact of non-linear thermal radiation on
Casson liquid flow past a moving thin needle with Stefan
blowing, Dufour, Soret, thermophoresis and Brownian
motion effects. This model as practical applications in the
development of novel surgical devices for cell conveyance to
the central nervous system. Blood flow in the blood vessels is
a communal example of Casson liquid stream among other
innovative applications of this liquid model. Graphs are
drawn for various parameters against velocity, temperature
and concentrations gradients. Results are modified to limited
cases to make reasonable study.

2. Governing equations and physical description

In this problem, we consider the model of steady flow and
heat transfer analysis of Casson nanofluid over a moving thin
needle with a constant velocity U, in a parallel free stream as
shown in figure 1. The influences of non-linear radiation
along with Stefan blowing, Soret and Dufour effects are also
invoked. Furthermore, the room temperature and the con-
centration of the needle are supposed to be fixed, such that
Ty, > T, and Cy > C,.. Further, the shape of the thin needle
is specified by r = R(x) = \/VUE in which composite velocity
U=U, + Uy =0. Flow is laminar and the slippage is
ignored. The needle is considered thin when its thickness does

Vv

w

Figure 1. Flow geometry of the considered physical model.

not exceed that of the boundary layer over it. Since, the
needle is assumed to be thin, it is also assumed that the effect
of its transverse curvature is of importance but the pressure
gradient along the body may be neglected.

The governing equations of the above assumed flow are
given by ([30-32]):
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The boundary constraints for the current study are as follow:
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u=Uy, T— Ty, C— Cypasr— . (6)

Stream function and similarity variables for the developed
governing equations are as follow:
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p=wfey, ="
vx
The velocity components u = 7‘;—“ nd v= 7( )?);
are related to the physical stream function @ according to,
= 2Uf (n) v=—="[f() — nf'()]. Further, {—x =

9(77) = x ().

After 1mplementation of the similarity variables,
equation (1) is automatically satisfied and the remaining
expressions are converted as:

(1 + L)Z(nfﬂ/ +f”) +ﬁf// _ O (7)
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Corresponding reduced boundary conditions are given by:

filoy =2 f(C) —sx o) + c%
0O =Ly =1, (10)
, 1A

P00 = 152060 = 0. x@e0) 0. (D)

Where, s < 0 signifies mass suction and s > 0 signifies mass
blowing as defined in [33].
Where, dimensionless parameters are defined as follows:

Pr=Y se=2 N=TPrq _7,
@] DB V I
T C - C k*kf
Ny = ZDg(Cy — v Oy ,
;v S =T 40°T3
Re,=* g \ U
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Mathematically, the surface drag force, rate of heat and
mass transfer are given by:

JRex Cr = (1 + é}m "), (12)
o= _zm)f(c)[l + (6, — DO |,
Rey
(13)
1
——Sh, =2 (¢). 14
= JEX () (14)

Table 1. The comparison of f'/(c) values for some reduced cases
when A = 0.

c 0.1 0.01 0.001
Souayeh et al [2] 1.288 801 8.492412 62.16371
Ishak et al [34] 1.2888 8.4924 62.1637
Chen and Smith [35] 1.288 81 8.492 44 62.163 72
Current results 1.2888 8.4924 62.1637

3. Numerical method

For various values of pertinent governing parameters, an effi-
cient RKF-45 technique is employed to integrate the
equations (7)-(9) along with the corresponding boundary
constraints (10), (11). Initially, a two-point boundary value
problem is reduced into first order differential equations. Also,
to guess the missing initial conditions a shooting scheme is
employed. Later, by using the RKF-45 method the resultant
one is integrated. Here, the process uses a fourth- and a fifth-
order Runge—Kutta scheme. The error of this algorithm can be
found by subtracting these two values, and utilized for adaptive
step sizing. The algorithm of the RKF-45 process is as follows:
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1 h
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The value of 7 is chosen in such a way that the boundary
conditions are asymptotically satisfied. The step size is selected
as An = 0.001 with error tolerance to 10~¢ is well-thought-
out for convergence. Table 1 represents the comparative study
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Figure 2. Domination of 5* on f.
of existing works with present results and found a good
agreement with each other. T T
4. Results and discussions ]
In this present examination, the non-linear thermal radiation |
impact on the stream of Casson fluid over a thin needle by
means of Buongiorno’s nanofluid model is discussed. At the ]
boundary of the needle Stefan blowing effect is considered. |
The equations which govern the flow are converted to ODEs
by choosing apt similarity variables. The impact of several 1
dimensionless parameters like Casson parameter, heating m
parameter, radiative parameter, Schmidt number, Stefan
blowing parameter, thermophoresis and Brownian motion i
parameters on concentration, thermal and velocity profiles are : !
explicated graphically. Also, skin friction, rate of mass and 4 5 6
. . T
heat transfer are deliberated graphically. Prandtl number has !
been specified to be adjusted for all of this while other Figure 4. Domination of Ny, on 6.
parameters are set to be varied to assess their effects in terms
of flow, heat and mass transfer.
Figure 2 portrays the domination of 8* on f/(n) for the L T ' ' ' ‘ T
cases A = 1 and A = —1. Here, \ = 1 specifies the case of 09+ .
the moving needle in a sedentary ambient liquid and A = —1
represents the free-streams wings in the negative x-direction. 08
The escalating values of 3* declines the f’(n) for the case 07+ .
A =1 while contrary movement is depicted in f’(n) for the 05l |
case A = —1. Physically, a rise in values of §* advances the '
liquid viscosity which results in declination of f’(n). Figure 3 =05 ]
demonstrates the sway of s on f/(n). An increase in s - |
improves the f’(n). We have detected that as the Stefan
blowing.parameter Valges upsurges, friction factor. at the 03 N,=01,03,05,07,09 ]
surface increases that is, week lateral mass flux into the 02} “
boundary layer upsurges. The domination of N, on 6(n) is
revealed in figure 4. The growing values of N, improves the 0k ' B3 |
0 (n). From a physical point of view, the growing value of N, 0 . —— : ‘
0 05 1 1.5 2 25 3 35 4

increases the thermal conductivity which automatically
improves the thermal gradient. Figure 5 portrays the dom-
ination of N, on 6 (7). Here, inclination in , inclines the 6 (). Figure 5. Domination of N, on 6.
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Figure 6. Domination of N; on 6.

Physically, for a warm surface (N; > 0), thermophoresis
impact improves the concentration of nanoparticles. Mean-
while, a hot needle fends off submicron particles which
results in forming a particle-free layer near the surface. The
encouragement of N; on 6(n) is portrayed in figure 6. It is
clear that, escalating values of N, improves the thermal gra-
dient. This is due to the physical fact that the inclination in N,
improves the thermal diffusivity which results in augmenta-
tion of A(n). Figure 7 portrays the impact of 6, on 6(7). The
upsurge in 6, improves the 6 (7). Physically, the inclination in
0, improves the inner temperature of liquid particles which
results in augmentation of 6 (n). Figure 8 illustrates the effect
of Du over temperature profile. As the values of Du increases
slightly, the thermal distribution increases. The thermal dif-
fusion increases as Du increases which augments the temp-
erature. Figure 9 explains the aspect of Sc on x (7). The
enhancing values of Sc weakens the y (7). Physically, the
upsurge in Schmidt number lessens the molecular diffusivity
which results in decay of mass transfer. Figure 10 depicts the
impact of Sr on x(n). The upsurge in Sr improves the con-
centration gradient. Higher values of Sr reasons for low
friction which in turn augments the x (7). Figure 11 displays
the impact of A on skin friction versus Casson parameter.
Here, the skin friction improves for the case A = 1 but con-
verse trend is depicted for the case A = —1. The impact of
radiative parameter on the heat transfer rate is showed in
figure 12. The increase in N, values decay the rate of heat
transfer. The sway of Stefan blowing parameter on mass
transfer rate is portrayed in figure 13. The gain in s deterio-
rates the rate of mass transfer

5. Conclusions

The present investigation explains the salient aspects of the
incitement of non-linear thermal radiation on the Casson
liquid stream over a moving thin needle with Stefan blowing,
thermophoresis and Brownian motion effects. The influences
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of Dufour and Soret are also considered in the model. The
impact of pertinent parameters on thermal, mass and velocity
curves are deliberated graphically. The following conclusions
are obtained from the present study:

* The growing values of N, progresses the thermal gradient
due to an increase in the thermal conductivity.

* The escalating values of N; and 6, improves the inner
temperature of liquid particles resulting in an improve-
ment in heat transfer.

* An upsurge in the Sc lessens the molecular diffusivity and
it results in declination of mass transfer.

* The enhancing values of N; improve the heat transfer.

e The thermal diffusion increases as Du increases which
augments the temperature.

* Higher values of Sr reasons for low friction which in turn
augments the mass transfer.
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