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Abstract
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We investigate bidirectional teleportation that works in a fair and efficient manner. Two explicit
protocols are proposed to realize bidirectional teleportation with a controller. One is a symmetric
protocol for two-qubit states. The other is an asymmetric protocol for single- and two-qubit
states. We then devise a universal protocol for arbitrary n,- and n,-qubit states via a

(2n1 4+ 2n, + 1)-qubit entangled state, where n; < n,. The receiver only needs to perform the
single-qubit recovery operation, which is derived by a general expression. Moreover, a

(2n; + 1)-bit classical communication cost can be saved within the controller’s broadcast

channel by the use of network coding technology.

Keywords: bidirectional controlled teleportation, network coding, projective measurement,

recovery operation
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1. Introduction

Quantum entanglement has been exploited as a fundamental
resource for the implementation of quantum information-
processing tasks. For example, Gong et al [1] proposed a
quantum network dialogue protocol based on continuous-
variable Greenberger-Home-Zeilinger (GHZ) states. Zhou
et al [2] proposed a semi-quantum key distribution protocol
with four-particle cluster states. Ma et al [3] investigated
probabilistic quantum network coding over a butterfly net-
work via non-maximal entanglement. In 1993, Bennett er al
[4] first presented a remarkable protocol called quantum tel-
eportation (QT) that securely transmits an unknown qubit
state based on the dual use of classical and quantum channels.
A different kind of QT scheme, controlled quantum tele-
portation (CQT) was introduced by Karlsson et al [5] to
realize teleportation under the supervision of a controller.
Although the controlling party does not own the teleported
state, he decides whether the state can be recovered by the
receiver. In addition, theoretical generalizations have been
proposed, such as probabilistic QT, [6] hierarchical QT,
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[7] QT in noisy environments, [8, 9] etc. Meanwhile, exper-
imental implementations of QT have also been repor-
ted [10, 11].

In addition to one-way QT, for a practical quantum
network that contains many processors working far apart, an
exchange of information states between two parties may be
required. This is possible simply by switching on two sets of
independent QT equipment in opposite directions. Since
standard QT needs to send a classical message about the
measurement result from the sender to the receiver, a situation
may arise in which Alice’s state has been teleported to Bob,
but Bob decides not to tell Alice about his measurement
result. This leads to an insecure or dishonest quantum com-
munication. Therefore, it is necessary to investigate bidirec-
tional quantum teleportation that works in a fair manner.
Mishra et al [12] presented a controlled communication
scheme which can simultaneously exchange two unknown
single-qubit states via a six-qubit entangled channel. Never-
theless, Alice and Bob cannot recover the target states in a
deterministic way. Zha et al [13] investigated the bidirectional
controlled quantum teleportation (BCQT) of arbitrary single-
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qubit states using a five-qubit cluster state as the entangled
resource with unit success probability. Because of its potential
application in quantum network communication, BCQT has
recently acquired a lot of attention. [14-27] Jiang et al [14]
developed a deterministic BCQT scheme for single-qubit
states utilizing a five-qubit non-maximally entangled channel.
[17-19] accomplished the BCQT of two-qubit states via
different entangled resources. Apart from the symmetric
protocols, [14—19] there are many asymmetric BCQT proto-
cols [20-25]. For example, [20-24] describe the BCQT of
arbitrary single- and two-qubit states. Thapliya et al [26] gave
a general method for selecting a quantum channel for BCQT.
To our knowledge, few universal protocols have been
described for arbitrary qubit states. Savaghad-Moghaddam
et al [27] attempted to investigate the BCQT of m- and
n-qubit states. Regretfully, they did not explicitly give the
relationship between the recovery operations, the collapsed
states, and the measurement results. A question may be
naturally raised: is it possible to devise a universal and effi-
cient BCQT protocol for arbitrary qubit states and give a
general formula for the recovery operations?

In this paper, under the assumption that classical com-
munication is not allowed between senders and that the
controller has a broadcast channel, we propose a universal
protocol to realize the two-way teleportation of arbitrary n-
and n,-qubit states with the help of the controller via a
(2ny 4 2n, 4 1)-qubit maximally entangled state. Without
loss of generality, we assume n; < n,. After the the sender’s
projective measurement using the Bell basis and the con-
troller’s single-qubit measurement using the Z basis, the
receiver performs single-qubit Pauli operations and gets the
target state deterministically. Through rigorous deduction, we
give the general expression for the recovery operators. Net-
work coding, a new paradigm that allows information to be
duplicated and mixed in the intermediate nodes, has demon-
strated a significant throughput advantage over traditional
routing algorithms in classical networks [28]. It is found that
if network coding is applied at the controller’s site, a
(2ny + 1)-bit classical communication cost (CCC) will be
saved in the broadcast channel. This means that our protocol
is more efficient than without network coding.

The remaining parts of this paper are arranged as follows.
In section 2, an explicit symmetric BCQT protocol is pro-
posed to realize the two-way teleportation of two-qubit states.
In section 3, an asymmetric BCQT protocol is described for
single- and two-qubit states. In section 4, we further extend
our discussion to a universal BCQT protocol for arbitrary n;-
and n,-qubit states by using a (2n; + 2n, 4 1)-qubit state as
the entangled channel. Some discussions and comparisons are
given in section 5. The last section offers the conclusions.

2. The symmetric BCQT protocol for two-qubit states

In this section, we construct a controlled protocol that leads to
the simultaneous exchange of arbitrary two-qubit states.
There are three participants: Alice, Bob, and Charlie. Alice

and Bob are not only senders but also receivers, while Charlie
is the controller.

Suppose Alice intends to teleport an arbitrary two-qubit
state [p)a,a, to Bob. At the same time, Bob wishes to teleport
an unknown two-qubit state [¢))p , to Alice’s site.

[©)an, = (0|00) + |01)
+ aa[10) + az|11))aa,,
[9)B,B, = (Bol00) + 3|01)
+ (2/10) + B3| 11))p,B,- ()
Alice has the teleported state |¢)s,4, and Bob owns [¢)p,p,.

Nothing is known about the complex coefficients, except that
they satisfy the normalization condition 23].:0|aj|2:

Zi:om.'i P=1
The quantum channel shared amongst the three partici-
pants is the nine-qubit entangled state

1
[Chizaserse = —=(Po)12|Po)34|Po)s6|Po)73|0)9

J2
+P1)12]P1)341P1)s6 [ P1)7811)0), 2)
where
@) = %uom + 1)),
1
o) = —(]00) — [11)). 3
|Py) ﬁ(l ) — 1)) 3)

Qubits (1, 3, 5, 7) belong to Alice, qubits (2, 4, 6, 8) belong to
Bob, and qubit 9 is held by Charlie.

Hence, the initial state of the whole system can be written
as

[©)an, @ V)8, @ |C)23as6789- 4)

The complete process of the symmetric protocol is
described as follows.

Step 1. Alice (Bob) performs joint projective measure-
ments on her (his) qubits (Aj, 1) and (A,, 3), (By, 6) and (B,,
8)) using the Bell basis

~100) + |11) _101) + [10)
|€OO> - \/E s |§0]> - \/5 5
1610) = w €)= w )

After the measurements, Alice announces her measurement
results |& 24 ) to Charlie in the form of classical messages p;g;.
Similarly, Bob sends four-bit classical information s;t; to
Charlie corresponding to his measurement outcomes |¢ ).
Here, pj, q;, 55, ;=0, 1, j=1, 2.

Based on the measurement bases, the joint system in
equation (4) can be expressed as

2 1
Hj:l (Zp,-,qj,sj,tj:()|£[7/-qj>Ai~2i*1 Igsjt/>B/,2j+4)
1 l I
(5102 g0, 21182 s )s7100 ) ©)

14l I :
where ;| fl’lqlﬁth )24|gs1 s t2>57|l>9 is the collapsed state of

qubits (2, 4, 5, 7, 9) if the measurement result is
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Table 1. The expressions for | f!

) and the recovery operations (RO).

P1a\P2492
1
Piqip2q2 L pigipage | |fp1<11pzqz> RO
00,00 0 1010 1 gl00) + ay]01) + ] 10) + as)11) o1
00,01 0 1011 1 gl01) + ay]00) + | 11) + 3] 10) IoX
00,10 0 10,00 1 aol00) — |01} + as|10) — as|11) I®Z
00,11 0 1001 1  gl01) — ay]00) + af11) — a310)  T® (ZX)
01,00 0 ILI0 1  aol10) + ay|11) + as]00) + as)01) X®I
01,10 0 11,00 1  agl0) — ay|11) + )00) — as301)  X®Z
01,11 0 11,01 1  ap/ll) — ay]10) 4+ asf01) — a300) X ® (ZX)
10,00 0 00,10 1  l00)+ ay]01) — o] 10) — a5)11) zZol
10,01 0 0011 1 agl0l)+a]00) — af11) — as10)  Z®X
10,10 0 00,00 1 ol00)—a]01) — as|10) + as|11) zZ0Z
10,11 0 0001 1 ag0l) —a]00) — an|11) + as10)  Z® (ZX)
11,00 0 0L10 1  agl0) + ay|11) — )00) — asf01)  (ZX)® 1
11,01 0 O0LI1 1  ap/ll) +ay]10) — af01) — a300)  (ZX) ® X
11,10 0 01,00 1 apl0) —ay|l1) — a]00) + as/01)  (ZX)®Z
11,11 0 0101 1 aglll) —ay]10) — asl01) + as)00)  (ZX) ® (ZX)
199 q]> alé, q2>A23|§s1t1>316|§s2t2>328‘ The expressions for then the qubits (5, 7, 2, 4) collapse into:

1l . . . 1
| fp]q]p2 @ Y24 are listed in table 1. The expressions for | 8515000 )57

can easily be obtained if « is replaced by (3 in table 1.

At this moment, Alice and Bob cannot obtain the original
states without the controller’s (Charlie’s) help.

Step 2. If Charlie would like to provide assistance, he
makes a single-qubit measurement of his qubit 9 using the Z
basis {|0), [1)} and broadcasts a classical message to Alice
and Bob.

It seems that Alice and Bob need to obtain the mea-
surement results s7;5,t,] and p;qip.g-l to recover the tele-
ported states, respectively. This means that Charlie has to
broadcast nine-bit classical messages. Using the technology
of network coding, Charlie just broadcasts the four-bit clas-
sical information (p; @ s; D I, g; @ t;) to Alice and Bob (j =1,
2). Here ¢ means plus mod 2.

Step 3. According to the received classical messages and
her (his) own measurement results p;q; (s;t;), Alice calculates
p;o@®s; @D, qd(g;Dt)] and gets [s;D I, #]. Bob
computes [s; @ (p; D s; D), 1;D (¢; D 1;)] and obtains [p; @ [,
g;]. Then Alice performs the recovery operation,

Ry = ZSS@IXStlz;zSIX;z’ 7

on her qubits (5, 7) and gets |¢)). Similarly, Bob carries out
the appropriate operation,

Rg =z ¥ xhzh%x, (8)

on his qubits (2, 4) and recovers the two-qubit state |p). Here
X, Z are Pauli operations and X°, Z° denote identity opera-
tions. In detail, Alice’s and Bob’s recovery operations con-
ditioned on the measurement results are listed in table 1.

To illustrate the protocol more clearly, we assume that
Alice’s measurement results are |£y1)[€10) (P11 =01,
P2g>=10) and Bob’s measurement results are [Epo)|&11)
(5171 =00, 5ot = 11). If Charlie’s measurement result is |1),

18011057 fgo11)24 = (BolO1) + B1/00) — Bol11) — B5]10))s
®(O¢0|10> + Oé1|11> — 042|00> - Oé3|01>)24.

)
Charlie broadcasts the four-bit classical information
P1Ds1BL prDsr®l, g1 Dt, 2P 1) =1111. Together
with their own measurement results, Alice and Bob can obtain
(510l @1, 4, tb)=1001 and (Bl pDI, qi,

q») = 1010, respectively. Alice performs a ZsX; operation on
her collapsed qubits (3y|01) + $1]00) — 35]11) — [55]10))s7
and Bob carries out (ZX),l, on his collapsed qubits
(o]10) + ay|11) — @,]|00) — 3|01))p4. As a result, the
desired states |p), 1) are simultaneously teleported.

3. The asymmetric BCQT protocol for single- and
two-qubit states

In this section, we demonstrate an asymmetric BCQT proto-
col. Alice wants to teleport an arbitrary single-qubit state |©) o
to Bob, while Bob hopes to transmit an arbitrary two-qubit
state [¢))p,p, to Alice.

[©)a = (0l0) + ai|1))a,
[¢)B,B, = (B0l00) + 51|01) 4+ B,|10) + (33|11))g,5,.

The coefficients of the teleported states are all complex

(10

numbers, and satisfy the normalization condition
le‘:()|04j|2 =1 23:0|BJ|2 =L
A seven-qubit entangled state,
|C 1234567 = %(|®0>12|¢0>34|©0>56|0>7
FIP1)12|DP1)34]P1)s6l1)7), (11)

serves as the quantum channel. Alice has qubits (1, 3, 5) and Bob
processes qubits (2, 4, 6), while qubit 7 is possessed by Charlie.
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Table 2. Expressions for |f ; 1ql> and the RO. X, on the collapsed state:
1 1y
P11 I pga 1 |f1171111> RO |g0110>35|f01>2 = (60|1O> - ﬁl|11>
00) — (s]01 1 0))2. 16

0 0 10 1 a0+l I +62100) — B3301))35 @ (coll) + i1]0))2 (16)
o0 0 11 1 all)+wm|0) X In the end, the desired states are two-way teleported with unit
100 0 00 1 a0)-mll) Z success probability.
10 0l 1 al)—al0) zX

The compound state is
lo)a @ [¥)B,B, @ |C)i234567-

The detailed process of the asymmetric protocol is shown
below.

Step 1. Alice (Bob) carries out a Bell basis measurement on
her (his) qubits (A, 1) (By, 4) and (B,, 6)). If Alice’s (Bob’s)
measurement result is [, ) (1€, ), j = 1, 2), she (he) sends the
classical bits pg; (sit;) to Charhe through the classical channel.

The whole system in equation (12) can be rewritten as

>Bj.2j+2
! I l

® Zlfﬁlq|> lgSlfl-thz> |l> :
=0 2 35 17

After the measurements, qubits (2, 3, 5, 7) collapse into
i Ollenql )218) ... )3511)7. The detailed expression for |fp’]q] )

is given in table 2, while | g3 . z,> is same as that in section 2.

Step 2. Charlie measures his qubit 7 in the Z basis. In
order to recover the teleported state, Alice and Bob need to
obtain the measurement results sq#;s,t! and p,q;l, respec-
tively. With the aid of network coding, Charlie broadcasts the
four-bit classical information (s; & p; DI, t; D qy, s2 DI, to).

Step 3. According to the received classical messages and
her (his) own measurement result p,q; (511, S2t2), Alice gets
[s:€1, t1, s2®I, 1] by calculating [p; B (s1Dp1 DI,
q1 @ (t; P q1)]. Similarly, Bob computes [s; & (s; ®p; B D),
t & (t; ®qp)] and acquires [p; ®I, q;]. Alice applies the
recovery operation,

_ 7s1®lyth7sdlyh.
Ry = 23" X3\ 257" X7,

12)

1
Z |§v,-t

s5j,tj=0

| 2
> 1€,,4,0A1 I1

P1-4,=0 Jj=1

13)

(14)

on her qubits (3, 5) and gets [¢)) in equation (10). Bob can
recover the teleported state |p) by performing the unitary
operation,

Rs = Z)'x ], (15)

on his collapsed particle 2.

An example is given below to clarify the protocol.
Suppose that Alice’s measurement outcome is |€op)
(p1g1 =01) and Bob’s measurement outcomes are |£1)|<;0)
(8171 =01, 5o, = 10). If Charlie’s measurement result is |0),
he broadcasts the four-bit classical information (s, & p; &/,
t B q, 55D 1, 1,) =0010. Alice and Bob can then get (s; &,
t, s, D1, ) =0110 and (p; DI, ;) = 01, respectively. Alice
and Bob separately perform the recovery operations X3Zs and

4. The universal BCQT protocol

In this section, we generalize the two explicit protocols given
above to a universal BCQT protocol that can realize the
simultaneous teleportation of arbitrary n,- and n,-qubit states.

Alice (Bob) has an unknown n,(n,)-qubit state in this form:

1

|<p>Al”‘An] = Z aalal a,,l>A1...A”],
ai,- u,ll:0

(IY)s,..B,, = Z Blby -+ byy)B,.-B,,)s (17)
by, by, =0

and wants to transmit it to Bob (Alice). The subscripts a and b
individually represent the decimal forms of binary strings
ay -+ ay, and by --- by,; o, and (3, are complex numbers that

satisfy Y0 o a2 = 1, X520 182 = 1.
We take a(ny+2ny + 1) -qubit entangled state,

|
%Zl@»lz
=0

o |¢)l>2n1+2n27l,2n1+2nz|l>2n]+2nz+],

|C>l-~-2n|+2ng+l =

(18)

as the quantum channel. The construction process of the

channel is similar to that given in [29]. The qubits

a, ---2n —1, 20+ 1, - 2ny + 2n, — 1) belong to Alice,

the qubits (2, --- ,2ny, 2n; + 2, --- ,2n, + 2n,) belong to Bob,

and the controller Charlie possesses the qubit 2n; + 2n, + 1.
The initial state of the whole system is given by

|©) A, @ [¥)B,.B,, @ |C)1...

In order to complete the task, the three participants are
required to perform appropriate measurements and corresp-
onding recovery operations. The process of our universal
BCQT protocol is shown in figure 1.

The sender’s operation. Alice (Bob) carries out projec-
tive measurements on her (his) qubits (A, 1), -,
(A, 2m — 1) (By, 20y + 2), -+, (B,,, 21 + 2n,)) using the
Bell basis and gets the measurement results |§p,- q’_>, i=1,
ey (1€g,), J = 1,0+n2).

Then, Alice (Bob) sends the classical bits p,q; (sit;) to
Charlie, representing the Bell-state measurement outcomes.

The compound system in equation (19) can be rewritten as

H ( Z I£pq DI, (Z Ifs,;j

i=1 p.g= Sjptji=

1 l
FZ,;prlql.“pm%] 285,15y 11)-

19)

2n+-2n41-

(20)

14l 1 . e AT
Yol fplql'--m]qnl ) ngl —_— [n) |) is the collapsed state if Alice’s
and Bob’s measurement results are |, ql>’ )€ oy q”l> and |€ ),

L€, ) Tespectively.



Commun. Theor. Phys. 73 (2021) 105104 M-Y He et al
A, A,
2n+1 242 20, +2m+1 2 42 2n,42n +1
. ‘oo e A
@O OO 18O 1@—O0—)
1 2 Heeses 2n, -1 2n i 3

Figure 1. Process of our universal BCQT protocol. Black solid points represent Alice’s particles, white points represent Bob’s particles, and
the gray point represents Charlie’s particle. The dotted ellipses indicate Bell-state measurements, and the solid circle is a single-qubit

measurement. The solid rectangle indicates the recovery operation.

Since
1
lkh) = —=> (=D&, yon) 21
‘/Enzo
one can get
! — (— 1] @®Dg,)!
pr]q]‘.lpnlqnj = (=D 0
1
z Qg H;‘:I (—1)“1(1’_f@1)|aj @ qj>, (22)
ap, =0
and
|gslltl....s‘nzln2> = (_I)UI(DMG)Z"Z)I
1
S B 172, (=YD @ 1)). (23)
bi,+ by =0

At this time, Alice and Bob are still unable to complete
the task without Charlie’s assistance, since their qubits are
entangled with Charlie’s qubit 2n; + 2n, + 1.

The controller’s operation. If Charlie consents to help
them, he executes a single-qubit projective measurement
using the Z basis.

If Charlie’s measurement result is |/) (/=0, 1), Alice’s
qubits (2ny + 1, 2ny + 3, -+ ,2n; + 2n, — 1) and Bob’s qubits
2, 4, ---.2n) collapse into a product state
| f[ilql“'[]nlqn] ) gxl1 ey tn2>. In order to recover the teleported

states, Alice and Bob need to know the measurement results
it -+ Spyty,l and pyqy -+ p, g, 1, respectively. It seems that
Charlie needs to broadcast (2n; + 2n, + 1)-bit classical
information, including p,q, - p,q,, sit - he
received and / corresponding to his own measurement result.
Instead, with the aid of network coding, Charlie just broad-
casts 2n, bits, as follows:

§1 EB [71 @ l,"'asnl @ Pnl @ l7 sn1+l @ l,"',Sn2 @ l’

Z‘l S¥ qlf"’t}’ll ® qn]a tn]+l""’tnz'

 Snylny

(24)
(25)
This means that a (2n; + 1)-bit CCC is saved.

Table 3. Comparison of the symmetric protocol for two-qubit states
(m=ny=2).

Protocol QC BO CCC NQT n

[17] 10-ES BSM, 10 4 g = 20%
SQM, RUO

[18] 9-ES BSM, 9 4 g ~ 22.22%
SQM, RUO

[19] 9-ES BSM, 9 4 g ~ 22.22%
SQM, RUO

Ours 9-ES BSM, 12 4 % ~ 19.05%
SQM, RUO

The receiver’s operation. According to the classical

messages received from Charlie and her (his) own measure-
ment results, Alice calculates

pi ©® (si @ pi ©® l)’ ql‘ S (q, @ ti)a (26)
Together with s, 1 @ l,---,8,, @ L, ty41,---.tn,, Alice gets
[s;® 1L t], j=1,..., no. Bob computes

5O (p&s®D, 1, (q D),

and gains [p;® 1, ¢;], i=1--- n,. Using equations (22) and
(23), Alice and Bob perform the recovery operations R, and
Rg on their qubits, which can be summarized as

i=1--m.

27

Siy®l

— 70l yh Iny
RA - ZZnHrlXZnHrl ZZn1+2nzle2n|+2nzfl’ (28)
_ o ®lyd PPl
Ry =z ¥Ix oz X, (29)

Accordingly, the BCQT is achieved with a success prob-
ability of 100%.

5. Discussion and comparisons
In this section, we first discuss the intrinsic efficiency [18]

and the necessary operations of our universal protocol. Then,
some comparisons with other protocols are given.
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Charlie

N\

>Bob

Alice ¢

(a)

Aﬁfe Bob

()

Figure 2. Classical channel models. (a) The usual model; (b) our model. A solid line with one arrow denotes a one-way broadcast channel,
while a dotted line with one arrow denotes a one-way classical channel.

Table 4. Comparison of the asymmetric BCQT protocol for single- and two-qubit states (n; = 1, n, = 2).

Protocol  QC BO CCC NQT n

[20] 8-ES UO, BSM, FQM, TQM, RUO 8 3 % = 18.75%
[21] 7-ES BSM, SQM, CNOT, RUO 7 3 % ~ 21.43%
[22] 7-ES BSM, SQM, RUO 7 3 & ~ 21.43%
[23] 7-ES BSM, SQM, RUO 7 3 % ~ 21.43%
[24] 7-ES BSM, SQM, RUO 7 3 & ~ 21.43%
Ours 7-ES BSM, SQM, RUO 10 3 2~ 17.65%

3

The intrinsic efficiency is an important factor for evalu-
ating the performance of a protocol, which is defined by

=% 30
n a b (30)
where g, represents the number of qubits to be transmitted, g,
is the number of particles used in the quantum channel, and b,
represents the classical bits that need to be transmitted.

As mentioned above, we propose a universal BCQT pro-
tocol for arbitrary n;- and n,- qubit states, which can be realized
deterministically. The (2n; + 2n, + 1)-qubit entangled state is
chosen as the quantum channel. Alice and Bob respectively
transmit 2n; and 2n, bits to the controller Charlie. Charlie
encodes his classical information corresponding to his mea-
surement result with the classical messages he received, and then
broadcasts the encoded result to Alice and Bob. The CCC in the
controller’s broadcast channel is 2n, bits. The total CCC is
2ny + 4n; bits. Therefore, the intrinsic efficiency of our universal
protocol is

. n + np

T om + 2+ D)+ Qm + 4ny)
. m—+ no
B 4n 4 6ny + 1

3D

In our symmetric BCQT protocol for arbitrary two-qubit states
(ny =ny =2), the intrinsic efficiency is n = % ~ 19.05%. In
our asymmetric BCQT protocol for arbitrary single- and two-
qubit states (n; =1, n,=2), the intrinsic efficiency
isn =2 ~ 17.65%.

If network coding is not applied, the total CCC is
4n, +4n, 4+ 1 bits. The intrinsic efficiency of the universal
protocol will be

_ nm + no
_ mtn
N 6n) + 6ny +2°

(32)

which is smaller than the intrinsic efficiency in equation (31).
In this case, the intrinsic efficiency of the symmetric BCQT

protocol is n = 24—6 ~ 15.39%. When n; =1 and n, =2, the

intrinsic efficiency is n = % ~ 15%. This reveals that the use

of network coding technology can reduce the CCC and
improve the intrinsic efficiency.

In the following, we give some comparisons with other
BCQT protocols. To make the comparison convictive, we
only choose some specific values of n;, n,. The results of
comparisons with previous symmetric and asymmetric pro-
tocols are given in tables 3 and 4, respectively. A detailed
explanation of the abbreviations is as follows: QC (quantum
channel), ES (entangled state), BO (basic operation), UO
(unitary operation), RUO (recovery unitary operation), BSM
(Bell-state measurement), SQM (single-qubit measurement),
TQM (two-qubit measurement), FQM (four-qubit measure-
ment), CNOT (controlled-NOT), NQT (number of the tele-
ported qubits).

From tables 3 and 4, one can see that the intrinsic effi-
ciencies of [17-24] are all greater than ours. The reason for
this is that the classical channel model they use is different
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from ours. Classical channel models are clearly shown in
figure 2, where (a) represents the model of [17-24], and (b)
represents our model. As well as the unfavorable aspects, our
scheme also has favorable aspects. The classical channel
models in [17-24] assume that each sender broadcasts her
measurement result. In other words, everyone has a broadcast
channel. This may reduce the CCC and improve the intrinsic
efficiency; however, the establishment of a broadcast channel
is much more difficult than that of a one-way classical
channel. For an actual communication network with multiple
users and a control center, it is not realistic to set up a
broadcast channel for each user. In our model, each sender
only has one classical channel with the controller, which
greatly reduces the requirement for classical channels.
Moreover, our model may be more applicable and safer in the
case that direct classical communication is not allowed
between different users, and the role of the controller is to be
a transmission relay or trusted third party.

6. Conclusions

Assuming that the two senders cannot transmit classical
messages to each other and that the controller has a broadcast
channel, we have devised a universal protocol for the two-
way teleportation of arbitrary n;- and n,-qubit states. The
proposed scheme has the following advantages. (i) Through
strict derivation, the recovery operator is given by a general
formula which clearly reveals the relationship with the mea-
surement results. (if) Network coding is performed at the site
of the controller. It is easy to see if the network coding is not
applied; a (2n; 4 2n, + 1)-bit CCC is required for Charlie’s
broadcast channel. Therefore, a (2n; + 1)-bit CCC is saved. It
may be helpful to realize secure quantum distributed trans-
mission tasks with a reduced CCC. We also believe that
network coding may be useful for saving resources in various
quantum network information-processing tasks.

The construction of the quantum channel only needs H
and CNOT gate operations on the auxiliary particles with an
initial state of |00 --- 0);...2442n,+1. The process of the uni-
versal protocol requires Bell-basis measurement, Z-basis
measurement, and single-qubit local Pauli operations. These
are feasible with the current experimental technology. It
should be noted that quantum entanglement is indispensable
in most existing BCQT schemes. However, from a practical
point of view, entanglements are often very vulnerable and
may suffer from destructive influences, or even disappear
completely. Therefore, the effects of noise should be taken
into account. Similarly to [8, 9], we can envisage the pro-
posed scheme in a noisy environment. Fortunately, some
mature anti-noise techniques, such as entanglement purifica-
tion and entanglement concentration, can be employed to
improve the fidelity of the transmitted quantum signals and
reduce the effects of noise.
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