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Abstract
This research explores the transport of a Jeffrey fluid through a permeable slit of microchannel
under the effect of a porous medium and constant reabsorption. Physical laws of fluid mechanics
are used to study the flow in a cross-sectional area of a narrow slit which generates a highly
nonlinear system of partial differential equation with nonhomogeneous boundary conditions. To
solve the complex boundary value problem; a recursive (Langlois) approach is used and explicit
expressions for velocity, pressure, stream function, flux, shear stress and fractional reabsorption
are calculated. It is noticed that the flow rate at the centre line of slit and shear stress on the walls
of slit decay due to the presence of porous medium and viscoelastic fluid parameters. It is also
quantitatively observed that more pressure is required for the fluid flow when the slit is filled
with a porous medium and reabsorption on the walls is constant. The mathematical results of the
present research have significant importance in the field of biofluid mechanics and medical
industry, therefore the application of a diseased rat kidney is also included in this research: and
reabsorption velocities in the case of a diseased and a healthy rat kidney are calculated with the
effects of a porous medium and constant re-absorption.

Keywords: creeping flow, Jeffrey fluid, uniform re-absorption, porous medium, permeable slit,
micro channel, Langlois approach

(Some figures may appear in colour only in the online journal)

Nomenclature

Symbols Description

u v, Velocity components

m Fluid viscosity

V0 Reabsorption velocity

( )Q x Axial flow rate

W Width of the rectangular slit

L Length of the slit

H Distance from centre to the wall of the slit

p Pressure

¯ ( )p x Mean pressure

y Stream function
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( )q x Leakage flux

 Small parameter of creeping flow

k1 Jeffrey fluid parameters

¯ ( )Dp L Pressure drop

Fa Fractional reabsorption

K1 Permeability of porous medium

Da Darcy’s number

Q0 Axial flow rate at the entrance region

S1 Reabsorption rate

l1 Ratio of relaxation to retardation time

a Darcy’s resistance parameter

Twall Shear stress on the wall

1. Introduction

The flow-through mini and microchannels have gained sig-
nificant importance in biomedical engineering, renal tubule
and artificial kidneys. The main problem in the development
of mini and microchannels are wall properties (friction on the
surface and permeability of the wall). It is proved through the
experimental results that non-Newtonian fluid flow through
the slit is beneficial to improve the lubrication performance in
the hydrodynamic system. Conry [1] confirmed experimen-
tally that non-Newtonian fluid can be used for hydrodynamic
viscoelastic materials and for the lubrication of rectangular
contacts. Effects of load enhancement by the thickening of
polymer is tested by Oliver [2] who found excellent results
from his study. Spikes [3] observed the behaviour of lubri-
cants in channels and found the pressure, velocity and flux of
fluid. Sawyer and Tichy [4] used non-Newtonian lubrication
for the second-order fluid, and Zhang et al [5] studied the
same for the Maxwell fluid model. Recently, prominent sci-
entists have studied the different non-Newtonian fluid models
for the biological flows with different physical effects [6–13].

The microstructure of different types of complex fluids
have gained a lot of attention due to its frequent use in the
medical industry and biophysics; these fluids were char-
acterized as viscoelastic, time-dependent and time-indepen-
dent fluids [14–17]. Bird et al [18] proposed a theory of
viscoelastic fluids that explained the viscous and elastic
effects and had complex mathematical structures as well.
Many interesting and challenging issues of viscoelastic fluids
were discussed by Baris [19], Yamamoto et al [20], Nallapu
and Radhakrishnamacharya [21], Reddappa et al [22],
Mirzakhalili and Nejat [23]. An important viscoelastic fluid
was a Jeffrey fluid which has a simple constitutive relation
and explained the structure of viscoelastic fluid. The Jeffrey
model can be used by means of local and convective deri-
vatives of the first Rivlin Erickson tensor. Nadeem et al [24]
discussed the similarity solution of a Jeffrey fluid over a
shrinking sheet and simplified the two-dimensional momen-
tum equation under the boundary layer assumption whereas

the flow of Jeffrey fluid in a rotating frame was studied by
Hayat et al [25]. Turkyilmazoglu [26] discussed the simul-
taneous effects of slip and heat transfer for Jeffrey fluid at
deformable surfaces and so forth.

Fluid flow through a porous medium have gained a lot of
importance in biological systems [27, 28]. Fluid transport
with the help of artificial and natural porous media plays a
vital role in biology, for example flow in biological tissues,
fluid transport in plants in xylem and phloem etc. Therefore,
many studies related to flow in porous media in biological
systems are studied by Baragh et al [29], Farooq et al [30],
Ajarostaghi et al [31], Bhatti et al [32] etc. From these
research works, it is analysed that porous media affect the
viscous and thermal properties of the non-Newtonian fluid
flow [33].

In this research, a microchannel filled with a porous
medium is taken to be the proximal renal tube of the diseased
kidney. The two-dimensional flow of a viscoelastic fluid in a
permeable rectangular conduit (two-directional) is a big
challenge of the present era, and as per our knowledge, no
attention has been paid to study the Darcy’s number for slow
flow of a viscoelastic Jeffrey fluid through a micro-channel
(narrow slot) with constant reabsorption on the wall. This
problem leads to a highly nonlinear set of partial differential
equation with non-homogeneous boundary conditions in a
finite domain. Such type of boundary value problems cannot
be solved easily by numerical and analytical techniques.
Analytical solution of such type of flow is important due to its
fluid properties. An analytical technique which is introduced
by Langlois et al [34] known as a recursive approach can be
used to solve the slow flow of viscous fluid. Slow viscoelastic
flow in an infinitely-long, straight tube of uniform cross-
section was considered by Langlois and Rivlin. It was shown
that the first, second, and third-order theories all predict rec-
tilinear flow, but a fourth-order theory predicts a secondary
flow in the cross-sectional area of planes. A method was
outlined for calculating the first, second, and third-order flow
fields and the velocity components were explicitly calculated
for a rectangular slit of cross-section area. In this research
two-dimensional momentum and continuity equations with
the non-homogeneous boundary conditions are linearized into
a steady slow flow of Jeffrey fluid in a narrow conduit with
the Langlois approach.

The present research is organized into six sections. The
first section includes the background and literature review of
the problem. In section 2 mathematical modelling of the two-
dimensional creeping flow of a Jeffrey fluid in a rectangular
slit with uniform reabsorption, has been made. The recursive
approach is used to solve the nonlinear problem in section 3
and expression for stream function, velocity profile, pressure
distribution, shear stress on the wall, flow rate and leakage
flux are calculated. The graphical results for pressure differ-
ence, velocity profile (on the entrance, middle and exit region)
and stream function are presented in section 4, application of
the proposed model is included in section 6 and concluding
remarks are added in section 6.

2

Commun. Theor. Phys. 73 (2021) 115003 H Mehboob et al



2. Mathematical modelling

Consider an incompressible, steady and two dimensional
Jeffrey fluid flow through a porous medium of a rectangular
cross-section of a rectangular slit with an x-axis located at the
centre of the rectangular slit and y-axis in the perpendicular
direction of the centreline. A constant reabsorption rate  V0 at
the permeable walls of the rectangular slit is uniformly dis-
tributed. The walls of the slit are separated by the distance H2
and the width of the slit is W H. The volume flow rate at
the entrance of the slit is Q .0

The geometry of the slit, as shown in figure 1, shows that
flow is symmetric about the centreline of the slit, therefore for
a computational purpose, we will consider only the upper half
of the slit.

Basic equations for the creeping flow of a Jeffrey fluid
[35] through a porous medium [36] are as follows

· ( ) =V 0, 1

( )+ =T Rdiv 0. 2

Where

( )= - +T Ip S, 3

⎛
⎝

⎞
⎠

( )m
l

l=
+

+ A
D

Dt
S

1
1 , 4

1
2 1

( ) ( ) ( )= +A V Vgrad grad . 51
T

Where V is the velocity field, T is the Cauchy stress tensor, S
is the extra stress tensor, A1 is the first Rivilin Erickson tensor,

I is the identity tensor, l1 and l2 are Jeffrey parameters,
D

Dt
is

total time derivative and R is Darcy’s resistance.
As we have a porous medium therefore for evaluating R

in equation (2), Darcy’s law will be employed and is as fol-
lows

m
= -R V

K
.

1

The proposed problem suggests that flow through a slit has
the following velocity profile

[ ( ) ( )] ( )=V u x y v x y, , , . 6

Creeping flow through slit of micro channel is discussed
by Ullah et al [37] and the suggest the following boundary
conditions

( )= = =u v V y H0, , for , 70

( )¶
¶

= = =
u

y
v y0, 0, for 0, 8

( ) ( )ò= Q W u y y2 0, d . 9
H

0
0

The creeping flow of a Jeffrey fluid through a slit suggest
that inertial forces are very weak when compared with the
viscous forces, therefore continuity equation and momentum
equations in the absence of inertial forces are as follows:
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and stress components can be obtained as follows:
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Non-dimensional parameters are introduced in the following
form
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Figure 1. Geometry of the problem.
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Using equation (16) in (11)–(15) and dropping *, one can
obtain the following form of equations

( )¶
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and boundary conditions take the following form

( )= = =u v S y0, , for 1, 231

( )¶
¶

= = =
u

y
v y0, 0, for 0, 24

( ) ( )ò =


u y y0, d
2

, 25
0

1

where ( )= + F k1 ,2 1
l

=k
Q

WH
,1

2 0
2

and =S
WHV

Q
1

0

0
are the

operator, Jeffrey parameter and reabsorption velocity
respectively.

Note that when l l 
Da

1
, , 0,2 1 the above system of

differential equations reduce to the creeping flow of New-
tonian fluid [38].

3. Methodology

We use the Langlois recursive approach to solve the
equations (18)–(19) with the boundary conditions (23)–(25).

Assume that ( ) ( )u x y p x y, , , and ( )T x y, can be expan-
ded in the following series form:

( ) ( ) ( ) ( ) ( )( ) ( )å å= =
=

¥
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¥
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1 1

( ) ( ) ( )( )å= +
=

¥

p x y p x y, Constant , , 27
i

i i
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T x y T x y, , . 28
i

i i

1

Substituting equations (26)–(28) into the (17)–(25) and
equating the coefficients of  , 2 and  ,3 one can get the
following first, second and third-order problems.

3.1. First order problem
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with the boundary conditions

( )( ) ( )= = =u v S y0, , for 1, 331 1
1

( )
( )

( )¶
¶

= = =
u

y
v y0, 0, for 0, 34

1
1

( ) ( )( )ò= =u y y x
1

2
0, d for 0. 35

0

1
1

Flow patterns can be observed by the stream functions;
therefore stream functions can be related with the velocity
profile by the following expressions:

( )( )
( )

( )
( )y y

=
¶
¶

= -
¶
¶

u
y

v
x

, . 361
1

1
1

With the help of the above stream function, the first-order
problem takes the following form.

( )( ) ( )y y -  =a 0. 374 1 2 2 1

( )
( ) ( )y y¶
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=

¶
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= - =
y x

S y0, , for 1, 38
1 1
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( ) ( ) ( )( ) ( )y y= =0, 0 0, 0, 1
1

2
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To solve the above boundary value problem by inverse
method, the following function is defined:

( ) ( ) ( ) ( )( ) ( ) ( )y = +x y S xX y Y y, . 411
1

1 1
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After using the above expression, equations (37)–(40)
take the following form

( )
( ) ( )

- =
X

y
a

X

y

d

d

d

d
0, 42

4 1

4
2

2 1

2

( ) ( ) ( )( ) ( )= = - =
y

X y X y y a
d

d
0, 1, at 1, 421 1

( ) ( ) ( )( ) ( )= = =
y

X y X y y b
d

d
0, 0, at 0. 42

2

2
1 1

The solution of equation (42) is given by the following
expression

( ) ( )( ) = + + + -X y A A y A Ae e . 43ay ay1
1 2 3 4

After using the boundary conditions given in
equations (42a) and (42b) one can get the following values of
arbitrary constants

( )
( )

= = - = -

=
-

A A A a a A A

A
a a a

0, 2 cosh , ,
1

2 cosh sinh
. 44

1 2 3 4 3

3

After using the values of arbitrary constants one can get
the exact solution of ( )X 1 that is given in appendix.
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4
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where
l

=
+

a
Da

1
.2 1

Following the same procedure of ( )X 1 one can get the
solution of the above equation is given as follows:

( ) ( )( ) = + + + -Y y B B y B Be e . 46ay ay1
1 2 3 4

After using the boundary conditions given in
equations (45a) and (45b) one can get the following values of
arbitrary constants

( )
( )

= = - = -

=
-
-

B B B a a B B B

a a a

0, 2 cosh , ,
1

4 cosh sinh
. 47

1 2 3 4 3 3

After using the values of arbitrary constants one can get
the exact solution of ( )Y 1 that is given in an appendix.

Following formulae are used to find mean pressure at any
section of the slit and pressure drop of slit respectively.

¯ ( ) ( ) ( )( ) ( ) ( )ò= -p x p p yd , 481
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3.2. Second-order problem

After equating coefficients of  ,2 the following equations are
obtained with the corresponding boundary conditions
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Boundary conditions for second order problem are as follow

( )( ) ( )= = =u v y0, 0, for 1, 562 2
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Stream function for a second-order problem is given as
follow
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After using the above relation, equations (51) and (52)
together with boundary conditions take the following form
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( ) ( ) ( )( ) ( )y y= =0, 0 0, 0, 1 0. 632 2

A solution of the above boundary value problem can be
assumed as

( ) ( )
( ( ) ( ))
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- +
a k S S x a
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With the aid of above relation, equations (60)–(63)
reduce into following form
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The solution of the above nonhomogeneous differential
equation is the sum of a complementary and particular solution.

( ) ( ) ( )( ) ( ) ( )= +X y X y X y ,c p
2 2 2

here ( )Xc
2 = 0, because boundary conditions are homogeneous

and ( )( )X yp
2 is given as follow

3.3. Third-order problem

After comparing the powers of  ,3 one can get the following
expressions
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and boundary conditions are
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Now stream function for a third-order problem is related
in the following manner.
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with the help of above relation, equations (69)–(70) with the
boundary conditions take the following form
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The associated boundary conditions are
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From equation (78), we can assume the following solu-
tion.

( ) ( ) ( )( ) ( )y = - + S x B X y1 2 , 823
1 1

3

where ( )( )X y3 represent an unknown function.
With the aid of above stream function, equations (78)–

(81) transform into the following form
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Follow the same steps as of second-order system, one can
get the value of ( )( )X y3 by computing the complementary and
particular solution that is given in the appendix.

After collecting the first, second and third-order solu-
tions, one can get the stream function, velocity and pressure
which are also given in the appendix
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The pressure drop of the slit is calculated by the fol-
lowing formula and is given in an appendix

¯ ( ) ¯ ( ) ¯ ( ) ( )D = -p L p p L0 . 87

Wall shear stress can be calculated by the following
formula

∣ ( )= =T T . 88xy ywall 1

Fractional reabsorption is defined as
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The axial flow rate is as follow
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Leakage flux is defined as follows

( ) ( )= - =q x
Q

x
S

d

d
2 . 911

Note that fractional reabsorption and leakage flux both
depend upon reabsorption rate ( )S1 but pressure distribution,
velocity and stress components depend upon reabsorption rate
( )S ,1 Darcy’s number ( )Da and Jeffrey parameters k1 and l .1

Equations (11)–(12) contain the term
K

1

1
due to porous

medium, if 
K

1
0,

1
then one can attain the results of

creeping flow of Jeffrey fluid through a slit presented by
Mehboob et al [35].

3.4. Special case for viscous fluid

From equations (18)–(19) one can get the results of viscous
fluid when Jeffrey parameters ( )lk1 2 and l  01 and Darcy’s
number 1/Da → 0 then the second and third-order system of
present research give the trivial solution. The solution for
velocity profiles, pressure gradient and shear stress of the
special case can only be obtained from the first-order system
which are as follows:
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4. Graphical illustrations

Graphical behaviour of horizontal and vertical component of
velocity, flow rate, pressure difference, stream function and wall
shear stress are observed for distinct values of porosity para-
meter S ,1 Jeffrey parameters lk ,1 1 and Darcy’s number Da. In
this study =x 0.1, = =x x0.5 and 0.9, show the middle and
exit points of the rectangular cross-section respectively.

4.1. Effect of porosity parameter ðS1Þ

Figures 2(a)–(c) indicate that horizontal velocity decreases by
increasing the porosity parameter S1 at the entry, middle and
exit region of rectangular cross-section, a decrease is faster in
the middle region but at the exit, region reverse flow has been
observed. It is also observed that near the centre of rectan-
gular cross-section flow is maximum due to pressure gradient
and near the walls of a rectangular cross-section, the fluid
flow becomes stationary due to wall friction. The variation of
porosity parameter S1 for the magnitude of the vertical
component of velocity is shown in figure 6(a) which indicates
that the vertical velocity component is symmetric about the
centre line also increases by increasing S .1 Figure 7(a) display
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that more pressure is required to make the fluid flow in a slit
when the reabsorption rate S1 rises. Due to high reabsorption,
more pressure is required for the fluid to flow. Figure 8(a)
indicates that the porosity parameter causes a reduction in the
shear stress on the wall, therefore fluid moves with less

amount of tangential force along the wall. From figure 9 it is
observed that the volume flow rate reduces by increasing the
reabsorption velocity because reabsorption velocity is trans-
verse to the flow direction. The streamlines are shown in
figures 10(a)–(c). It can be noticed that by increasing the

Figure 2. Effect of S1 on horizontal velocity component for =k 0.4,1 l = 1.21 and =Da 0.5.

Figure 3. Effect of k1 on horizontal velocity component for l= =S 1.4, 1.21 1 and =Da 0.5.

Figure 4. Effect of Da on horizontal velocity component for l= =S 1.4, 0.21 1 and =k 0.4.1

Figure 5. Effect of l1 on horizontal velocity component for = =k Da1.2, 0.61 and =S 1.4.1
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Figure 6. Effect of S k Da, ,1 1 and l1 on vertical velocity component.

Figure 7. Effect of S k Da, ,1 1 and l1 on the pressure difference.
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values of porosity parameter S1 the contour size increases
which predicts that reabsorption causes thinning of fluid.

4.2. Effect of Jeffrey parameter ðk1Þ and ratio of relaxation to
retardation times ðλ1Þ

Figures 3(a)–(c) and 5(a)–(c) show the effect of Jeffrey para-
meters k a1 nd l1 for the velocity profile at the entrance, middle
and exit region of the slit. The impact of Jeffrey parameters k1

and l1 on the vertical component of velocity can be seen in
figures 6(b) and (d). It is observed that the magnitude of vertical
velocity decreases by increasing Jeffrey fluid parameters k1 and

l ,1 For distinct values of k1 andl .1 Figures 7(b) and (d) show that
amount of pressure from one point to another point falls with the
extending amount of viscosities k1 and l1 of the Jeffrey fluid.
Figures 8(b) and (d) illustrate that increasing Jeffrey fluid para-
meters k1 and l1 help to decrease the wall shear stress. The
streamlines are shown by the graphs of stream function in
figures 11(a)–(c) and 13(a)–(c). Figures 11(a)–(c) indicate that by
increasing Jeffrey fluid parameter k ,1 contour size decreases due
to viscoelastic properties of the fluid whereas figures 13(a)–(c)
show that with the increasing values of l1 (ratio of relaxation to
the retardation time) contour size increases because the relaxation
time exceeds the retardation time.

4.3. Effect of Darcy’s number ðDaÞ

It can be seen from figures 4(a)–(c) that by increasing Darcy’s
number Da horizontal velocity increases in the middle of the
rectangular cross-section and decreases near the wall. In
the middle and exit region of the rectangular cross-section, the
reverse flow has been observed due to finite boundary.
Figure 6(c) describes that with the increasing values of Darcy’s
number Da transverse component of velocity increases as pore
size in the bulk of fluid increases. Figure 7(c) shows that
pressure difference decreases by increasing Da. The impact of
Da on wall shear stress is shown in Figure 8(c), which indi-
cates that shear stress decreases with the increase in Da.
Figures 12(a)–(c) illustrates the effect of Da on streamlines and
it can be noticed that contour size decreases as Da rises.

Figure 8. Effect of S k Da, ,1 1 and l1 on shear stress on the wall.

Figure 9. Effect of S1 on axial flow rate.
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5. Application to the diseased kidney

Fifty years ago, renal transplantation of a rat was performed.
Although at that time the microsurgical technique was challen-
ging, several combinations of a genetic and outbred rats were

used to model many complications of renal transplantation,
including IRI, acute rejection and chronic allograft nephropathy.
When the renal tubule is infected by the pus cells then the urine
contains small pus cells that are considered as pores in the bulk of
the fluid volume. Results of this research i.e. equation (94) is used

Figure 12. Effect of Da on stream function ( ) ( ) ( )= = =Da Da Daa 0.1, b 0.3, c 2.0.

Figure 10. Effect of S1 on stream function ( ) ( ) ( )= = =S S Sa 0.4, b 0.45, c 0.6.1 1 1

Figure 11. Effect of k1 on stream function ( ) ( ) ( )= = =a k k k0.15, b 0.4, c 0.9.1 1 1

11

Commun. Theor. Phys. 73 (2021) 115003 H Mehboob et al



to evaluate the average pressure and filtration rate in the diseased
rat kidney. Tables 1–2 show that for different values of fractional
reabsorption, average pressure and filtration rate give significant
results. It is assumed from the literature [39] that =L 0.67 cm,

=H 0.001 08 cm, = -W 10 cm,1 m = -0.007 37dyn s cm ,2

= ´ - -Q 4.08 10 cm s ,0
8 3 1 l = 0.11 and l = 0.03212 can be

used in the results of equation (94) to find the average pressure
and filtration rate of the rat kidney. For computing Darcy’s
number, we have chosen the values of K1 from [40]. Table 1
shows that with the increase in fractional reabsorption and fil-
tration rate, fluid requires high pressure when compared with the
healthy kidney. The average values of pressure required for the
urine flow and reabsorption of the different substances during
the urine formation through the healthy kidney are given in
table 2. This study is very helpful to measure the pressure and
fractional reabsorption required during the blood filtration through
an artificial kidney.

6. Conclusions

In the present study, the slow flow of a Jeffrey fluid through a
permeable rectangular slit of cross-sectional area ´ ´L W H
embedded in a porous medium is discussed. The mathematical
model of creeping flow of a Jeffrey fluid is presented by the set
of the complicated nonlinear partial differential equation which

is solved by the Langlois approach. The results of [38] for the
case of Newtonian fluid can be obtained, if l l , 01 2 and
k1 → 0 whereas and the results of Mehboob et al [35] recovers
as a special case when one choose k1 → 0. The present research
analyses different features for velocity, pressure and stream
functions, which are as follows

• The axial velocity diminishes with the extending values
of porosity parameter S1 in the rectangular cross-section
of the slit, and also there is a decrease in axial velocity,
which is dominant in the middle region of the slit and
reverse behaviour is observed at the exit of a slit.

• It is predicted that mounted values of Jeffrey parameters
( )lk ,1 1 cause shrinkage in the magnitude of axial velocity
at the centre of the entrance, middle and exit region.

• The magnitude of transverse velocity grows with the
extending values of S1 and Da and decays with the
improving values of k1 and l1 but at the centre of slit,
the fluid comes at rest and then start to move in the
opposite direction.

• It is also noticed that more pressure is required to flow the
fluid in a slit when the reabsorption rate S1 rises but the
amount of pressure from one point to another falls with
the extending amount of viscosities k1 and l .1

• The present research indicates that the porosity parameter
cause reduction in shear stress on the wall because
uniform reabsorption helps to accelerate the flow, and
therefore, the fluid moves with less amount of tangential
force along the wall.

• The volume flow rate of Jeffrey fluid through the slit
reduces by increasing the reabsorption velocity because
reabsorption velocity is transverse to the flow direction.

Figure 13. Effect of l1 on stream function ( ) ( ) ( )l l l= = =a 0.3, b 0.5, c 1.0.1 1 1

Table 1. Filtration rate for the diseased rat kidney (in the presence of Darcy’s resistance).

Fractional reabsorption 80% 70% 60% 50%

Average pressure (dyne cm−2) ´1.6 104 ´1.3 104 ´1.0 104 ´7.6 103

Filtration rate (cm s−1) ´ -2.3 10 4 ´ -2.0 10 4 ´ -1.7 10 4 ´ -1.4 10 4

Table 2. Derived values from the present model for a healthy kidney.

Description Symbol Numerical value

Pressure drop p 15 mmHg
Reabsorption rate V0 ´ -5.638 10 4 cm s−1

12

Commun. Theor. Phys. 73 (2021) 115003 H Mehboob et al



• The contour size increases by increasing the values of porosity parameter S1 and Darcy number Da which show that
reabsorption causes thinning of the Jeffrey fluid and increasing value of Jeffrey fluid parameters k1 and l1 show that the
contour size decreases which causes to thickening of the Jeffrey fluid.

This research is beneficial to measure the pressure, flow rate, and reabsorption of the urine flow through a diseased kidney.
The present study has neglected the effects of body forces, inertial forces and curvature that can be considered in future work.
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( ) ( ( ) ) ( )
( ( ) )

( ) ( ) ( )
( ) ( ( ))

( )

( )

¢ = + + +
+ + + + + +
´ + + +
= + +
´ + +
+ + + + +

F y A A x A x y ay A y

A A A x x A A x A x y
ay A A A x x ay

p A A A x x

ay A A y ay

A A x x A y A ay y p

cosh

sinh sinh 2

cosh 2 cosh

sinh

4 5 6
2

7

8 9 10 11 12 13
2 2

14 15 16

2
17 18 19

20 21
2

22 23 24 25 0
2

where ( )p0
2 is the pressure at the entrance of the slit.

¯ ( ) ( )( ) = + +p x A A A x x2
26 27 28

¯ ( ) ( ) ( )( ( ) ( ) ( ))
( )( ( ) ( ))

( ) ( )( ) ( )
( )( ( ) ( ))

( ) l l
l

l
l

D = -
- + + + + - +

+ -

-
- + - + -

+ -

p L
a k LS LS a a Da a Da a

Da a a

a k LS LS a a Da a

Da a a

1 cosh 4 3 2 3 2 1 4 cosh 2

16 1 acosh sinh

1 cosh 7 8 7 sinh 2

16 1 acosh sinh

2
2

1 1 1 1 1

1
3

2
1 1 1

2
1

1
3
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( ) ( )
( ) ( )

( ) ( )

( ) ( )= - + + +

+ + + +
+ + +

T p A A x A x ay

A A A y ay A y
A A x x A y ay

cosh 2

cosh
sinh

xx
2

0
2

29 30 31
2

32 33 34
2

35
2

36 37 38

( )( ( )
( ) ( ) ( ))

( )
( ) ( )
( )

( )

( )

( ) ( )

= - +

+ + +
= - + +

+ +
+ + +
+

T S x A y ay

A A y ay A ay

T p A A ay

A A y ay

A A x x A y
A y ay

1 2 cosh

sinh sinh 2

cosh 2

cosh

sinh

xy

yy

2
1 39

40 41
2

42

2
0

2
43 44

45 46
2

47 48 49
2

50

( )
( )

( ) ( )
( ) ( )

( ) ( )- = + +
´ +
+ + + +
´ +

T T A A x A x

ay A

A A x x A A y
ay A y ay

cosh 2

cosh sinh

xx yy
2 2

51 52 53
2

54

55 56 57 58
2

59

where ¼A A A A, , , ,4 5 6 59 are all constants depending upon k1,
S1 and a.

( ) ( )
( ) ( )
( ( ))

( ) ( ) ( )

y = + + +
+ + + +
+ + + + + +
´ + +

C C x y C C x y

C y C y C xy C xy ay

C C y C y x C C y C y
ay C C x ay

cosh

sinh sinh 2 ,

1 2 3 4
3

5 6
3

7 8
3

9 10
2

11
4

12 13
2

14
4

15 16

( )
( ) ( )
( ) ( )
( ( ) ) ( )

= + + + +
+ + +
+ + +
+ + + +

u C C x C y C xy C ay

C C y C y ay

C C y C y x ay

C y C y C y C y x ay

cosh 2

cosh

cosh

sinh ,

17 18 19
2

20
2

21

22 23
2

24
4

25 26
2

27
4

28 29
3

30 31
3

( ) ( ) ( )
( ) ( )

( )

= + + +
+ + +
+ +

v C C y y C C y y ay

C C y C y ay
C ay

cosh

sinh
sinh 2 ,

32 33
2

34 35
2

36 37
2

38
4

39

( ) ( )
(

) ( )
( ) ( )
( ) ( )

- = + + + +

+ + + +
+ + + +
+ +
+ +
+ + +

p p C y C y C xy C x C x y

C x C C y C y ay

C C x C xy C x

C y C x y ay

C y C y ay

C xy C x y C y ay

cosh

cosh 2

sinh

sinh 2 ,

0 40
4

41
2

42
2

43 44
2 2

45
2

46 47
2

48
4

49 50 51
2

52
2

53
2

54
2 2

55 56
3

57 58
2

59

¯ ( )
¯ ( ) ( )

= + +
D = +
p x C C x C x

p L C L C L L

,
.

60 61 62
2

63 64

( ) ( )
( )

( ) ( ) ( )
( ) ( )

= + + + + +
+ + +
+ + + + + +
´ + + +
+ + + -

T C C x C y C y C xy C x

C x y C y C y ay

C C y C x C xy C x C x y

ay C C y C y ay

C y C x C x ay p

sinh

cosh 2 cosh

sinh 2 ,

xx 65 66 67
2

68
4

69
2

70
2

71
2 2

72 73
3

74 75
2

76 77
2

78
2

79
2 2

80 81
2

82
4

83 84 85
2

0

( ) ( ) ( )
( ) ( )
(

) ( )
( ) ( ) ( ) ( )

= + + +

+ + + +
+ + + + +
+
+ + + +

T C C x y C C x y ay

C C y C x C xy y ay

C C y C y C x C xy

C xy ay

C C y ay C C y x ay

cosh 2

cosh

sinh

sinh 2 sinh 2 ,

xy 86 87 88 89

90 91
2

92 93
2

94 95
2

96
4

97 98
4

99
2

100 101
2

102 103
2

( ) ( ) ( )
( ) ( )
( ) ( )

= + + + +

+ + +
+ + +
+ + -

T C C x C x C y C y

C C y ay C y ay

C C y C y ay

C C y y ay p

cosh 2 sinh 2

cosh

sinh ,

yy 104 105 106
2

107
2

108
4

109 110
2

111

112 113
2

114
4

115 116
2

0

( ) ( )
(

)
( ) ( ) ( )

( ) ( )

- = + +

+ + +
+ + +
+ + + +
+ +
´ + +
+ + +

T T C C x C x

C y C xy C x y

C C y C y ay

C C x C x C y

C xy C x y

ay C C y y ay

C C x C x y ay

cosh

cosh 2 sinh

sinh 2 ,

xx yy 117 118 119
2

120
2

121
2

122
2 2

123 124
2

125
4

126 127 128
2

129
2

130
2

131
2 2

132 133
2

134 135 136
2

∣ ( )= = - +=T T C S x1 2 .wall xy y 1 139 1

= +
=

u C C x
v S

,max 137 138

max 1

where ( ) ( ) ( )+ + =p p p p0
1

0
2

0
3

0 and ¼C C C C, , , ,1 2 3 139 are
all constants.
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