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Abstract
Entanglement is the crucial resource for different quantum information processing tasks. While
conventional studies focus on the entanglement of bipartite or multipartite quantum states, recent
works have extended the scenario to the entanglement of quantum channels, an operational
quantification of the channel entanglement manipulation capability. Based on the recently
proposed channel entanglement resource framework, here we study a further task of resource
detection—witnessing entanglement of quantum channels. We first introduce the general
framework and show how channel entanglement detection is related to the Choi state of the
channel, enabling channel entanglement detection via conventional state entanglement detection
methods. We also consider entanglement of multipartite quantum channels and use the stabilizer
formalism to construct entanglement witnesses for circuits consisting of controlled-Z gates. We
study the effectiveness of the proposed detection methods and compare their performance for
several typical channels. Our work paves the way for systematic theoretical studies of channel
entanglement and practical benchmarking of noisy intermediate scaled quantum devices.

Keywords: quantum entanglement, quantum channel, entanglement detection, entanglement
witness
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1. Introduction

Entanglement is a key feature of quantum physics [1–3],
having wide applications in various quantum information
processing tasks including quantum dense coding [4],
quantum teleportation [5], quantum cryptography [6], quant-
um computation [7], etc. However, because almost every
quantum system is noisy, how the noise affects the quantum
system and whether entanglement survives under the noise is
important for robust and reliable quantum information pro-
cessing. It thus becomes one of the basic problems of
quantum entanglement theory to check whether a quantum
state is entangled or not. Entangled quantum states could be
detected and analyzed by several theoretical and experimental
tools. Many researchers have contributed to various separ-
ability standards and detection methods [8–16]. Notable

approaches in the practical analysis of entanglement include
the usage of positive but not completely positive maps [8] and
entanglement witnesses [9–12].

Conventional entanglement theory focuses on the non-
local correlation of quantum states, and quantum channels are
used as their manipulation tool. Recent works have shown
that quantum channel itself could be regarded as the resource
object [17–22] and the entanglement of channels has be stu-
died under the framework of quantum resource theories
[23–28]. Analog to quantum states, quantum channels are
also categorized into entangled and separable ones, with the
amount of entanglement quantified via channel entanglement
measures [23–25]. Since a positive channel entanglement
measure generally implies the existence of entanglement, it
serves as a natural way to detect channel entanglement.
However, a channel entanglement measure generally requires
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full information of the process, hence demanding a cost that is
exponential to the system size. Because the channel has both
inputs and outputs, the cost increases even quadratically faster
than the one of states. Efficient state entanglement detection
methods exist when exploiting the specific structure of the
target resource and allowing a certain amount of failure,
whether we could analogously detect channel entanglement
remains open.

Here, we address this problem by considering general
approaches for detecting channel entanglement. We first
review the framework of state and channel entanglement as
well as the task of entanglement detection. Then we show that
detecting the channel entanglement is equivalent to detecting
the entanglement of the corresponding Choi state, the output
state of the channel given the maximally entangled input. We
give three general channel entanglement detection strategies
based on conventional state entanglement detection methods
—negative partial transpose (NPT) [29], the computable cross
norm or realignment criterion (CCNR) criterion [30, 31], and
entanglement witnesses. We further extend the discussion to
multipartite quantum channels and show how the stabilizer
formalism [32] helps in designing entanglement witnesses for
circuits consisting of CZ gates. As examples, we consider
noisy CNOT and SWAP channels and show the effectiveness
of the propose methods.

2. Background

We first review the framework of entanglement for bipartite
states and channels, and the task of entanglement detection.
For a system A, we denote the corresponding Hilbert space as
A and the set of state operators as ( ) A . Consider a bipartite
system AB, we call the state sAB separable when it can be
expressed as [33–35]

( )ås l s s= Ä 1AB
i

i A
i

B
i

with l 0i , lå = 1i i , and local states sA, sB on quantum
systems A and B, respectively. Otherwise the state is entan-
gled. On the other hand, quantum channels are linear and
completely positive and trace-preserving maps which act on
quantum states [36]. A quantum channel  could be written
in the Kraus form [37] as

( ) ( )† år r=
=

K K , 2
i

r

i i
1

where the Kraus operators { }Ki fulfil † å == K Ki
r

i i A1 . Let
( ) Î  ¢ ¢AB A BCPTPAB be a bipartite channel, it is called

separable [23, 25] if it can be written as

( ) ( ) ( ) ( )† år r= Ä ÄX Y X Y , 3AB AB
i

A
i

B
i

AB A
i

B
i

where ( ) ( )† † å Ä =X X Y Yi A
i

A
i

B
i

B
i

AB, otherwise the channel is
entangled. The entanglement of multipartite states and chan-
nels could be similarly defined.

Suppose a quantum information task requires to prepare
an entangled state yAB and the practically prepared state is
rAB. The task of entanglement detection is to determine

whether rAB is entangled. A general detection strategy cor-
responds to a function f, which distinguishes separable and
entangled states. However, since the geometry of the set of
separable states is complex, detecting the entanglement of an
arbitrary state is a challenging task. A conventional entan-
glement detection strategy is to exploit a linear witness
operator W such that ( ) sWTr 0AB for all separable states
sAB and it detects the entanglement of rAB with ( )r <WTr 0AB
[16]. Here we review three general strategies of constructing
the witness operator, which will be extended to detecting
entanglement of quantum channels in the next section.

The first method is to exploit the positive but not com-
pletely positive map of transpose, or the NPT property of
states. In particular, we always have s 0AB

TA when applying
a partial transpose TA on a separable state sAB, whereas we
could have a negative partial transposed state r < 0AB

TA when
rAB is entangled. In this case, we can find the eigenvector ∣fñ
with a negative eigenvalue [38], i.e. ∣ ∣r f l fñ = ñAB

TA with
l < 0. Then, a linear witness operator can be constructed as
follows [16, 29]

∣ ∣ ( )f f= ñáW . 4TA

It is easy to verify that for any state with positive partial
transpose, which include separable states sAB, we have

[ ] [∣ ∣ ] [∣ ∣ ] ( )s f f s f f s= ñá = ñáWTr Tr Tr 0, 5AB AB AB
T TA A

and for the entangled state rAB,

( ) (∣ ∣ ) (∣ ∣ )
( )

r f f r f f r l= ñá = ñá = <WTr Tr Tr 0.

6
AB AB AB

T TA A

In practice, we may not know the density matrix rAB and
hence cannot get the eigenvectors with negative eigenvalues.
Nevertheless, a realistic quantum protocol generally assumes
an ideal pure state yAB, and the partial transposed pure state
yAB

TA could be used as the witness operator. Indeed, any partial
transposed pure state could serve as the witness operator,
although to be able to detect the entanglement of a given state,
the operator should be accordingly chosen.

The second method is based on a Schimidt decomposi-
tion [39] of the density operator, namely the computable
CCNR. Specifically, denote the set of Hermitian operators on
 as ( )  , which is a linear space with inner product

[ ]†á ñ =V V V V, Tr1 2 1 2 , for any ( ) ÎV V,1 2 . Then for any
density matrix ( ) ( )   r Î ÌAB AB AB , the Schmidt
decomposition of rAB is

( )år l= ÄV V , 7AB
k

k k
A

k
B

where l 0k ,Vk
A andVk

B are orthonormal bases in ( ) A and
( ) B , respectively. Then we can construct the witness as

follows [30, 31]

( )  å= Ä - ÄW V V . 8A B
k

k
A

k
B

It is easy to verify that for any separable state
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˜s l s s= å ÄAB i i A
i

B
i , we have

[ ] ˜ [( ) · ( )]

( )

åås l s s= - Ä ÄW V VTr 1 Tr 0.

9

AB
k i

i A
i

B
i

k
A

k
B

Therefore, the state rAB is entangled whenever
[ ]r <WTr 0AB . Again, the witness operator W could be

constructed from any state, for example based on the ideal
pure state yAB.

In the third method, we construct the witness operator W
based on any observable O as

( )a= -W O, 10

where

( ) ( )a s=
s

Omax Tr . 11AB
is separableAB

Since [ ] s aOTr AB , we have [ ] sWTr 0AB for all separ-
able states. In practice, we could choose y=O AB and the
witness operator can effectively detect entanglement with
white noise.

Given the witness operator, a practical scheme is to
decompose the operator into local observables. This is parti-
cularly important for detecting multipartite entanglement
because it is hard to measure a general multipartite obser-
vable. Efficient witnesses have been constructed for several
typical classes of states including the W state and general
graph states. In the next section, we show how similar stra-
tegies could be extended to efficient channel entanglement
detection.

3. Channel entanglement detection

3.1. Bipartite channels

Since a quantum channel has both inputs and outputs, we first
map a channel to a quantum state. In particular, consider a
bipartite channel AB that maps AB to ¢ ¢A B , we consider the
maximally entangled input state F Ä FAA BB with

∣ ∣F = å ñáii jj dij and d being the dimension of each sub-
system [23–25]. The output state

( ) ( )F = F Ä F¢ ¢ 12AA B B AB AA BB

is called the Choi state which is a one-to-one map between
states and channels. The entanglement of the biparitite
channel can be now reformulated via the entanglement of the
Choi state.

Lemma 1. A bipartite channel AB is entangled if the Choi
state F ¢ ¢AA B B is entangled.

Similar results have been discussed in several works
[23–25] and we refer to appendix for the proof. Based on such
a connection, we can now study the entanglement of channels
via its Choi state. Focusing on entanglement detection, our
task now becomes to find an observable W, such that

[ ] F ¢ ¢WTr 0AA B B for all separable channels  . Following
the above results for quantum states, we can similarly

introduces three types of witness operators for Choi states of
channels.

• Consider the eigenvector ∣fñ with a negative eigenvalue

of F ¢ ¢AA B B, the witness operators is ∣ ∣f f= ñá ¢W TAA .

• Suppose  lF = å Ä¢ ¢
¢ ¢V VAA B B k k k

AA
k
B B, the witness

operator is = - å Ä¢ ¢W V Vk k
AA

k
B B.

• For any observable ¢ ¢OAA B B, we can construct a witness as
a= - ¢ ¢W OAA B B

with [ ]


a = FF ¢ ¢ ¢ ¢¢ ¢
Omax Tr AA B B AA B B, is separableAA B B

.

We will shortly show that we can realize the witness with
quantum games consisting of proper input states, measure-
ments, and payoffs. Next, we extend the discussion to the
multipartite scenario.

3.2. Multipartite channel entanglement

We consider the entanglement of multipartite channels
[40, 41]. Consider a channel Qn that maps n systems
{ }¼ n1, 2, , to n systems { }¢ ¢ ¼ ¢n1 , 2 , , , it is fully separable
when

( ) ( )( ) ⨂ ⨂ ( )†
år rQ =¼ = ¼ =X X , 13n n

j
k
n

k
j

n k
n

k
j

1,2, , 1 1,2, , 1

where the Kraus operators satisfy
(⨂ ) (⨂ )† å Ä == = ¼X Xi k

n
A
j

k
n

A
j

n1 1 1,2, ,k k
. Otherwise, the

channel is entangled. Furthermore, suppose we divide the n
systems into two parts { ¯}S S, , the channel is called bisepar-
able when it can be written as [11, 42]

( ) ( ) ( ) ( )¯ ¯
†år rQ = Ä Ä¼ ¼X X X X , 14n n

j
S
j

S
j

n S
j

S
j

1,2, , 1,2, ,

where ( ) ( )¯
†

¯ å Ä Ä Ä =X X X Xi S
j

S
j

S
j

S
j . When a channel is

not biseparable under any bipartition, it is called genuinely
entangled.

Based on the Choi state of the channel

( ) ( )F = Q F Ä ÄF¢ ¢ ¼ ¢
Q

¢ ¢... , 15nn n nn11 ,22 , , 11

we can similarly relate the entanglement of Qn to the entan-
glement of F ¢ ¢ ¼ ¢

Q
nn11 ,22 , , .

Lemma 2. A multipartite channelQn is (genuinely) entangled
if the Choi state F ¢ ¢ ¼ ¢

Q
nn11 ,22 , , (genuinely) entangled.

Therefore, we could use techniques of detecting multi-
partite entanglement to detect channel entanglement. While
the three entanglement detection methods work similarly for
multipartite channels, how to make the detection to be effi-
cient is in general a challenging task for multipartite channels.

3.3. Entanglement detection via quantum games

In the above discussion, the entanglement witness is con-
structed and applied with respect to the Choi state of the
channel. While we could get the Choi state by inputting a
maximally entangled state, we need to double the system size,
making its implementation hard. Here, we show a different
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yet equivalent entanglement detection way via quantum
games [43–46].

A quantum game  is defined by the tuple
({ } { } { }) a r= O, ,ij i j , where ri are input states, { }Oj is a

positive observable valued measures at the output, and
a Îij are the real coefficients which define the particular

game. The performance in the game  enabled by a channel
 is quantified by the payoff function

( ) [ ( )] ( )   å a r= O, Tr . 16
ij

ij j i

Consider the bipartite channel AB as an example, we have
( ) [ ( )] r r= F Ä¢ ¢ ¢ ¢d ITri AB AB AA B B i AB A B, ,

T according to the
Choi–Jamiolkowski isomorphism. Then we have

( ) [ ( )]

[ ] ( )

   



a r= å F Ä

= F

¢ ¢ ¢ ¢

¢ ¢

d O

d W

, Tr ,

Tr , 17

i j i j AA B B i AB j A B

AA B B

, , ,
T

,

where the W operator is

( )å a r= Ä ¢ ¢W O . 18
i j

i j i AB j A B
,

, ,
T

,

Therefore, for any witness operator W, we can decompose it
as above and it corresponds to a quantum game [43]. Suppose
the quantum game with a witness operator W is ( ) W , then
we can show that for any separable channel NAB we have

( ( )) ( )   W, 0. 19AB

In practice, we can equivalently realize the witness via a
quantum game. Instead of witnessing the entanglement of the
Choi state, we can apply the channel to a set of input states,
measure the output, and linearly combine the measurement
outcomes. The game payoff function plays a similar role of
detecting channel entanglement.

4. Example

Now we show entanglement detection for several typical
channels. We also note the following fact that local unitary
operations before and after the channel does not change the
entanglement.

Lemma 3. Given a multipartite channelQn with local unitary
¼U U U, , , n1 2 and ¼V V V, , , n1 2 , Qn is entangled if

( )◦ ◦( )Ä Ä Ä Q Ä Ä ÄU U U V V V... ...n n n1 2 1 2 is entangled.

Therefore, any entanglement witness for a channel 
works similarly to other channels ◦ ◦   that are equivalent
to  under local unitary operations  and  .

4.1. Bipartite channels

We first consider bipartite channels, specifically, the CNOT
and SWAP gate under local depolarizing noise, as shown in

figure 1. In particular the CNOT and SWAP gates are unitary

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )= =U U

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, 20CNOT SWAP

and the local depolarizing noise is

( ) ( ) ( ) r r= - +p p1 2. 21p

The noisy CNOT/SWAP channel is

( ) ( ( ) ) ( )†  r r= Ä¢ ¢ U U , 22p AB AB p A p B AB, , ,

where U is either UCNOT or USWAP. Here we explicitly show
the three entanglement witnesses for the CNOT gate and the
result works analogy for the SWAP gate.

The Choi state of the CNOT gate is

∣ ∣ ∣

(∣ ∣ ∣ ∣ )
( )

F ñ= F ñ F ñ

= ñ + ñ + ñ + ñ

¢ ¢ U ,
1

2
0000 0011 1110 1101 ,

23

AA B B
AB

AA BB
CNOT

CNOT

and the density matrix is

∣ ∣ ( )F = F ñáF¢ ¢ ¢ ¢ ¢ ¢ . 24AA B B AA B B AA B B
CNOT CNOT CNOT

The three witness operators could then be constructed
accordingly. Consider the eigenvector with a negative
eigenvalue of F ¢ ¢AA B B

CNOT , the witness operators of the first
method is ∣ ∣f f= ñá ¢WCNOT,1

TAA with

∣ ( ∣ ∣ ∣ ∣ ) ( )fñ = - ñ - ñ + ñ + ñ0001 0010 1100 1111 2. 25

Suppose lF = å Ä¢ ¢
¢ ¢V VAA B B k k k

AA
k
B BCNOT , the witness operator

of the second method is = - å Äl ¹
¢ ¢W V Vk k

AA
k
B B

CNOT,2 , 0k
.

We have four nonzero eigenvalues l l l l= = = = 0.51 2 3 4

with

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

 
 

 

s s s s

s s s s s s

s s s s s s

s s s s s s s s

= - - = - -

= + = - +

= - = +

= + = - -

¢ ¢

¢ ¢

¢ ¢

¢ ¢

V V

V V

V V

V V

2 , 2 ,

2 , 2 ,

2 , 2 ,

2 , 2 .

26

AA
z z

B B
x x

AA
z z

B B
y y z z

AA
x x y y

B B
x x

AA
x y y x

B B
y z z y

1 1

2 2

3 3

4 4

For any observable ¢ ¢OAA B B, we can construct a third witness
as = - F ¢ ¢W AA B BCNOT,3

1

2
CNOT .

Figure 1. The CNOT or SWAP gate with local depolarizing noise.
Given maximally entangled input states ∣ ∣F = FñáFAA AA and

∣ ∣F = FñáFBB BB, the output state corresponds to the Choi state of the
noise channel. The task is to detect the entanglement of the output
state between the bipartition between ¢AA and ¢B B.
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Given the witness operator, we can now construct the
quantum game by decomposing the witness in the Pauli basis.
In particular, we have the quantum games for WCNOT,1 and
WCNOT,2 as shown in tables 1 and 2, respectively. We note that
interestingly, even though the two witness operators WCNOT,2

and WCNOT,3 are constructed differently, we do have
= *W W2CNOT,2 CNOT,3. We note that in the quantum games

for WCNOT,1 and WCNOT,2, we used Pauli matrix as input states
for simplicity, which is not exactly correct. Nevertheless, we
can solve the problem by decomposing each Pauli matrix as a
linear combination of pure states. Furthermore, there may
exist better decomposition of the witness operator when we
consider general input states and measurements [44, 47].

For the SWAP gate, its Choi state is

∣ ∣ ∣

(∣ ∣ ∣ ∣ )
( )

F ñ= F ñ F ñ

= ñ + ñ + ñ + ñ

¢ ¢ ¢ ¢U ,
1

2
0000 0101 1010 1111 ,

27

AA B B
AB

AA B B
SWAP

SWAP

and the density matrix is

∣ ∣ ( )F = F ñáF¢ ¢ ¢ ¢ ¢ ¢ . 28AA B B AA B B AA B B
SWAP SWAP SWAP

The three witness operators could then be constructed
accordingly. Consider the eigenvector with a negative
eigenvalue of F ¢ ¢AA B B

SWAP , the witness operators of the first
method is

( ∣ ∣ )( ∣ ∣)= - ñ + ñ -á +á ¢W 0010 1000 0010 1000SWAP,1
1

2
TAA .

Interestingly, for the second and third method, we again have
the same witness (with different but irrelevant normalization
factor). In particular, we have =W W6SWAP,2 SWAP,3 with

= - F ¢ ¢W AA B BSWAP,3
1

4
SWAP . We also convert the witness into

quantum games. In particular, we have the quantum games for
WSWAP,1 and WSWAP,2 as shown in table 3 and 4, respectively.

Consider a noisy CNOT and SWAP gate with different
noise ratio, we show the three entanglement witness values in
figure 2. Since the second and third methods give basically
the same witness, we have normalized the witness value. For
the noisy CNOT gate, the second and the third methods
outperform the first method, whereas for the noisy SWAP
gate, have the same effect under normalization.

4.2. Multipartite channels

Up to now, we have studied the effectiveness of the proposed
detection methods and compare their performance for several
typical bipiartite channels. Here we consider the entanglement
of multipartite quantum channels, and use stabilizer witness to
detect multipartite channels consisting of noisy CZ gates [48].
We consider a special circuit with two CZ gates in figure 3(a)
and the results could be similarly generalized to larger circuits
with more CZ gates. Using lemma 3, the Choi state FAA BB CC1 1 1

of the circuit could be mapped to a graph state ∣ ñGCZ (see
figure 3(b)) with white noise on local system [49]. Therefore,
we can use stabilizer witness to detect the entanglement of the
graph state ∣ ñGCZ to study the entanglement of the noisy CZ
multipartite channel [50]. The elements of the stabilizer for

Table 1. Quantum game with WCNOT,1 for the noisy CNOT gate.

α rA
T rB

T
¢OA ¢OB α rA

T rB
T

¢OA ¢OB

1     1  sx  sx

1  sy sz sy −1  sz sz sz

−1 sx sx sx  −1 sx  sx sx

1 sx sz sy sy 1 sx sy sy sz

1 sy sz sx sy 1 sy sy sx sz

1 sy sx sy  1 sy  sy sx

1 sz sy  sy −1 sz sz  sz

1 sz  sz  1 sz sx sz sx

Table 2. Quantum game with WCNOT,2 for the noisy CNOT gate.

α rA
T rB

T
¢OA ¢OB α rA

T rB
T

¢OA ¢OB

14     −2  sx  sx

2  sy sz sy −2  sz sz sz

−2 sx sx sx  −2 sx  sx sx

2 sx sz sy sy 2 sx sy sy sz

2 sy sz sx sy 2 sy sy sx sz

2 sy sx sy  2 sy  sy sx

2 sz sy  sy −2 sz sz  sz

−2 sz  sz  −2 sz sx sz sx

Table 3. Quantum game with WSWAP,1 for the noisy SWAP gate.

α rA
T rB

T
¢OA ¢OB α rA

T rB
T

¢OA ¢OB

1     1  sz  
1   sz  1  sz sz 
−1 sx   sx −1 sx sz  sx

−1 sx  sz sx −1 sx sz sz sx

1 sy   sy 1 sy sz  sy

1 sy  sz sy 1 sy sz sz sy

−1 sz   sz −1 sz sz  sz

−1 sz  sz sz −1 sz sz sz sz

Table 4. Quantum game with WSWAP,2 for the noisy SWAP gate.

α rA
T rB

T
¢OA ¢OB α rA

T rB
T

¢OA ¢OB

12     −4  sx sx 
4  sy sy  −4  sz sz 
−4 sx   sx −4 sx sx sx sx

4 sx sy sy sx −4 sx sz sz sx

4 sy   sy 4 sy sx sx sy

−4 sy sy sy sy 4 sy sz sz sy

−4 sz   sz −4 sz sx sx sz

4 sz sy sy sz −4 sz sz sz sz

5

Commun. Theor. Phys. 73 (2021) 115101 C Li et al



graph state ∣ ñGCZ are products of the operators

≔ ≔

≔ ≔

≔ ≔ ( )

(∣ ) (∣ )

(∣ ) (∣ )

(∣ ) (∣ )

ñ ñ

ñ ñ

ñ ñ

g X Z g Z X Z

g X Z g Z Z X Z

g X Z g Z Z X

, ,

, ,

, . 29

G G

G G

G G

1 1 2 2 1 2 4

3 3 4 4 2 3 4 6

5 5 6 6 4 5 6

CZ CZ

CZ CZ

CZ CZ

Then, we can consider the following stabilizer witness

⎡

⎣
⎢

⎤

⎦
⎥≔

( )

∣

(∣ ) (∣ )

  
 -

+
+

+
ñ

=

ñ

=

ñ

W
g g

3 2
2 2

30

G
k

k
G

k

k
G

1,4,5 2,3,6
CZ

CZ CZ

for the graph state to detect the genuine entanglement of the
channel. We can similarly convert the witness into a quantum
game according to section 3.3. In particular, we apply the
Hadamard gate on qubit 2, 4, 6 and map the Pauli measure-
ments on qubit1, 3, 5 as input states. The entanglement of the
noisy CZ multipartite channel is shown in figure 4. We can
clearly observe the existence of genuine entanglement
whenever <p 0.2. We note that the method could be
extended to quantum circuits consisting of multiple CZ gates.
In the general case, we can similarly construct the stabilizer
witness.

5. Conclusion

In this work, we have studied entanglement detection of
quantum channels. By relating the channel entanglement to
the entanglement of the corresponding Choi state, we exploit
state entanglement detection methods for witnessing channel
entanglement. Using the language of quantum games, we can
further convert the witness operator as a quantum game of the
channel. Based on the general result, we proposed three

methods to construct witnesses that allow to detect entan-
glement of bipartite channels and compare their performance
for noisy CNOT and SWAP channels. From these results, the
three methods could become convenient tools for routine
performance detection of bipartite quantum channels. We also
introduced the definition of mulitipartite channel entangle-
ment, noting that Choi state of quantum channels with CZ
gates correspond to graph states. We can then use graph state
witnesses to detect multipartite circuits consisting of CZ
gates.
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Appendix A. Proof of lemma 1

Here we prove that a bipartite channel is separable if its Choi
state is separable. First, let ( ) Î A B A BCPTP 0 0 1 1 be a
bipartite channel. If  is separable, it can be expressed as

( ) ( ) ( ) ( )† år r= Ä ÄX Y X Y , A1A B
i

A
i

B
i

A B A
i

B
i

0 0 0 0 0 0 0 0

where ( ) ( )†å Ä Ä =X Y X Y Ii A
i

B
i

A
i

B
i

A B0 0 0 0 0 0
. We prove the

two directions using the following two lemmas.

Lemma 4. For a bipartite channel
( ) Î A B A BCPTP 0 0 1 1 , its Choi state is separable if 

is a separable channel.

Proof. If a bipartite channel ( ) Î A B A BCPTP 0 0 1 1 is
separable. Then, we have
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0 0
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So Choi state of the bipartite channel  is separable. ,

If Choi state FAA BB1 1
of a bipartite channel  is separ-

able, it can be expressed as

( ) åF = Äp . A3AA BB
i

i i
AA

i
BB

1 1
1 1

we assume that  i
AA1 and  i

BB1 are pure states. Hence

∣ ∣
∣ ∣ ( )
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y y

y y

= ñá

= ñá

,

, A4
i
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i
BB

i i BB

1
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1
1

where ∣ ∣ ∣y l a bñ = å ñ ñi AA j ij ij A ij A1 1
and we can define ∣y ñi AA1

similarly.

Lemma 5. For a given bipartite channel
( ) Î A B A BCPTP 0 0 1 1 .  is separable if its Choi state

is separable.

Proof. We first assume that the input state is a product state,
i.e. r r r= ÄAB A B. According to the Choi–Jamiolkowski
isomorphism, we have
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Note that [ ] Tr i
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T1 can be written as
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where ∣ ∣ a aá ñ =¢ ¢ij A ij A ijij
AT . We denote that

∣ ∣l b a= å ñáXA
i

j ij ij ij and ( ) ∣ ∣*l a b= å ñá+
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AA
A A

i
A
i

A
T1 and similarly

[ ] ( )†  = X XTr i
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Finally we obtain
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For a general input state, we can always decompose it as a
linear combination of product states (possibly with negative
coefficients). Together with the linearity of the above
equation, it is not hard to see that it also hold for any
bipartite quantum state. ,

Appendix B. Sketch proof of lemma 2

The proof of lemma 2 follows naturally with the help
lemma 1. First, we show that a separable multipartite channel
is equivalent to a separable Choi state. In this case, we divide
the parties into two partitions and regard the system as a

Figure 4. Stabilizer witness value ∣á ññW GCZ as a function about the
noise parameter p.
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bipartite one. Then we can exploit lemma 1 to prove the
equivalence. The equivalence for genuine entanglement fol-
low naturally.
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