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Abstract
The present paper deals with the Sharma–Tasso–Olver–Burgers equation (STOBE) and its
conservation laws and kink solitons. More precisely, the formal Lagrangian, Lie symmetries, and
adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws. Kink
solitons of the STOBE are then extracted through adopting a series of newly well-designed
approaches such as Kudryashov and exponential methods. Diverse graphs in 2 and 3D postures
are formally portrayed to reveal the dynamical features of kink solitons. According to the
authors’ knowledge, the outcomes of the current investigation are new and have been listed for
the first time.

Keywords: Sharma–Tasso–Olver–Burgers equation, conservation laws, Kudryashov and
exponential methods, kink solitons, dynamical features

(Some figures may appear in colour only in the online journal)

1. Introduction

Partial differential equations (PDEs) particularly their non-
linear regimes are applied to model a wide variety of phe-
nomena in the extensive areas of science and engineering. As
useful tools for simulating many nonlinear phenomena, such
models play a pivotal role in progressing the real world.
During the past few decades, one of the major goals has been
the construction of novel approaches to extract solitons for
PDEs. In the last years, several well-organized methods have
been proposed to derive solitons of PDEs, the hyperbolic
function method [1–4], the modified Jacobi methods [5–8],
the Kudryashov method [9–14], and the exponential method
[15–20], are samples to point out.

It is noteworthy that all conservation laws of PDEs do not
include physical meanings, however, such laws are essential to

explore the integrability and reduction of PDEs [21, 22]. Con-
servation laws of PDEs can be found by using a wide range of
methods such as the multiplier approach, the Noether approach,
the new conservation theorem, and so on. Of these, the new
conservation theorem was first established by Ibragimov and is
associated with the formal Lagrangian, Lie symmetries, and
adjoint equations of PDEs. Conservation laws can be derived for
every symmetry of PDEs and the obtained conservation laws are
referred to as trivial or non-trivial [23–29].

In the present study, the authors deal with the following
Sharma–Tasso–Olver–Burgers equation [30]

( )
( ) ( )

1
u c u u u uu u c uu u3 3 3 2

0,
t x x xx xxx x xx1

2 2
2+ + + + + +

=

and derive its conservation laws and kink solitons. As is clear
from the name of equation (1), such a model consists of the
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Sharma–Tasso–Olver and Burgers equations. These equations
have been the main concern of a lot of research works. Or-
Roshid and Rashidi [31] employed an exponential method to
derive the solitons of these equations. In another invest-
igation, multiple solitons of these equations were obtained by
Wazwaz in [32] through the simplified Hirota’s method. Very
recently, Hu et al [33] constructed soliton, lump, and inter-
action solutions of a 2D-STOBE using a series of systematic
ansatzes.

Kudryashov and exponential methods, as privileged
approaches, have been applied by many scholars to retrieve
solitons of PDEs. Particularly, the effectiveness of these
methods has been demonstrated by Hosseini et al in several
papers. Hosseini et al [34] derived solitons of the cubic-
quartic nonlinear Schrödinger equation using the Kudryashov
method. The exponential method was utilized in [35] by
Hosseini et al to acquire solitons of the unstable nonlinear
Schrödinger equation.

The rest of the current study is as follows: In section 2,
the conservation theorem and the foundation of Kudryashov
and exponential methods are given. In section 3, the formal
Lagrangian, Lie symmetries, and adjoint equations of the
STOBE are established to derive its conservation laws. In
section 4, Kudryashov and exponential methods are adopted
to seek solitons of the STOBE. Section 4 further gives diverse
graphs in 2 and 3D postures to demonstrate the dynamical
features of kink solitons. The achievements of the present
paper are provided in section 5.

2. The conservation theorem and methods

In the current section, the conservation theorem and the
foundation of Kudryashov and exponential methods are for-
mally given.

2.1. The conservation theorem

To start, suppose that a PDE can be expressed as

( ) ( )P u u u, , ,... 0, 2x t =

where P is a polynomial. The Lie point symmetry generator
of equation (2) is given by

( ) ( )

( ) ( )
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where ( )x t u, , ,xx ( )x t u, , ,tx and ( )x t u, ,h are known as the
infinitesimals. The kth prolongation of equation (3) is
retrieved by
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u u

k... , 1,k
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where

( )( ) D D u ,i i i
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1h h x= -
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Above i j, 1, 2= and i 1l = for l k1, 2,..., .= The total
derivative operator is indicated by D .i

The formal Lagrangian is given by multiplying
equation (2) by w as follows

L wP,=

where w is the adjoint variable. It is noteworthy that the
adjoint equation is retrieved by

( )P
L

u
, 4

d
d

=*

where
u

d
d

is the variational derivative.
If the solution of equation (4) is found, then, a finite

number of conservation laws for equation (2) are derived.

Theorem 1. Every Lie point, Lie-Bäcklund, and nonlocal
symmetry of equation (2) results in a conservation law. The
components of the conserved vector are given by [29]
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u
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where W u ,j
jh x= - and ix and h are the infinitesimal

functions. The conserved vectors generated by equation (5)
consist of the arbitrary solutions of the adjoint equation.
Consequently, one derives a finite number of conservation
laws for equation (2) by w [36].

Theorem 2. Derived conserved vectors using (5) are
conservation laws of equation (2) if

( )D T 0.i
i =

Here, Di is referred to as the total derivative [37].

2.2. Foundation of methods

The Kudryashov method applies the following series [9, 10]
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Above, a i N, 0, 1,...,i = are unknowns, N is retrieved by
the balance approach, and
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da
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1
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+
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

is the solution of

( ) ( )( ( ) ) ( )K K K a1 ln .¢ = -  

Equations (6) and (7) together result in a nonlinear system
which by solving it, solitons of equation (7) are derived.

The exponential method investigates a solution for
equation (7) as [15, 16]
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where the unknowns are acquired later and N .Î +
Again, equations (7) and (8) together yield a nonlinear

system which by solving it, solitons of equation (7) are
obtained.

3. The STOBE and its conservation laws

In the present section, the conservation theorem is applied to
the STOBE to derive its conservation laws. First, the formal
Lagrangian is derived in the following form

( ( )
( )) ( )

L w u c u u u uu u
c uu u

3 3 3
2 , 9

t x x xx xxx

x xx

1
2 2

2

= + + + +
+ +

where w is the adjoint variable.
The adjoint equation is acquired with the aid of the

variational derivative as

( )
( ) ( )

F w c u w uw w
c w uw

3 3
2 . 10
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xx x

1
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2
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+ -

*

If u is replaced by w in equation (10), then, equation (1) is not
obtained. Thus, equation (1) is not self-adjoint. In such a case,
one can say that w 1= is a solution of equation (10).

A one-parameter Lie group for equation (1) is given by

( )x x x t u, , ,xex +

( )t t x t u, , ,tex +

( )u u x t u, , ,eh +

where e is the group parameter, and consequently equation (1)
admits following Lie point symmetry generator

X
x t u

.x tx x h=
¶
¶

+
¶
¶

+
¶
¶

Obviously, X must be satisfied the Lie symmetry condition as
follow
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The third prolongation of the Lie point symmetry generator is
given by
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where
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If we apply ( )X 3 to equation (1), an equivalent condition is
obtained as
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Now, after some operations, we find the infinitesimal func-
tions as follows
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where k ,1 k ,2 and k3 are arbitrary constants. Finally, the Lie
point symmetry generators of equation (1) are given by
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The commutator table for the above symmetries (see
equation (11)) has been given in table 1.

Now, conservation laws of the STOBE for all founded
Lie point symmetry generators are derived. Conservation laws
formulae for equation (1) are as follows
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Case 1. If we employ (12) and (13) to equation (9) with the
use of X ,1 we acquire the following conservation laws
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Due to the satisfaction of the divergence condition, these
conservation laws are called local conservation laws. Such
conservation laws are infinite trivial conservation laws. In this
case, we have

( ) ( )D T D T u w u w 0.x
x

t
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t t t t1 1+ = - =

It is noted that for w 1,= from T x
1 and T ,t1 one can find
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Table 1. The commutator table for the above symmetries.

[ ]X X,i j X1 X2 X3

X1 0 0 X Xc

c1
2

9 2
2
2

1
-

X2 0 0
X

3
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X3 X Xc
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2

9 2
2
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1
- +

X

3
2- 0

3

Commun. Theor. Phys. 74 (2022) 025001 K Hosseini et al
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Finite conserved vectors (14) and (15) satisfy the divergence
condition, so they are trivial conservation laws.

Case 2. If we apply (12) and (13) to equation (9) with the aid
of X ,2 we find the following local conservation laws

( )T c u w c u w u w c u c
wu
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3
,

.

x
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x
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Owing to the satisfaction of the divergence condition, these
conservation laws are called local conservation laws. Such
conservation laws are infinite trivial conservation laws. In this
case, we have
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It is notable that for w 1,= one can get

T u ,x
t2 =

~

T u .t
x2 = -

~

The above finite conserved vectors satisfy the divergence
condition, consequently, they are trivial conservation laws.

Case 3. If we employ (12) and (13) to equation (9) with the
use of X ,3 we obtain the following conservation laws
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Due to the satisfaction of the divergence condition, these
conservation laws are called local conservation laws. Such
conservation laws are infinite trivial conservation laws.

It is noted that for w 1,= one can find
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Such conserved vectors satisfy the divergence condition, so,
they are trivial conservation laws.

4. The STOBE and its solitons

In the present section, Kudryashov and exponential methods
are adopted to seek solitons of the STOBE. The present
section further gives diverse graphs in 2 and 3D postures to
demonstrate the dynamical features of kink solitons. To start,
we establish a transformation as follows

( ) ( ) ( )u x t U x wt, , , 16= = - 

which w is the soliton velocity. Equations (16) and (1)
together result in
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N N N3 3 1 1.+ = +  =

4.1. Kudryashov method

Equation (6) and N 1= offer taking the following solution
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for equation (17). From equations (17) and (18), we will attain
a nonlinear system as
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where its solution yields
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Case 1:
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Thus, the following soliton to the STOBE is acquired
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Thus, the following soliton to the STOBE is derived
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The dynamical features of the kink soliton ( )u x t,2 are given
in figure 1 for c 0.15,1 = c 0.15,2 = d 5,= and a 2.7.=

4.2. Exponential method

Taking N 1= in equation (8) leads to
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where its solution results in
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Thus, the following soliton to the STOBE is acquired
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Taking N 2= in equation (8) yields
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Equations (17) and (20) together result in a nonlinear system
whose solution gives
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Figure 1. The kink soliton ( )u x t,2 for c 0.15,1 = c 0.15,2 = d 5,= and a 2.7.=
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Thus, the following soliton to the STOBE is derived
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Consequently, the following exact solution to the STOBE is
obtained
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Figure 2 gives the dynamical features of the kink soliton
( )u x t,2 for a 1,1 = - b 1,0 = b 1,2 = c 0.15,1 = c 0.15,2 =

and a 2.7.= Furthermore, the physical behaviors of u2
KM and

u2
EM for above parameters have been given in figure 3

when t 0.=

Remark 1. According to the authors’ knowledge, the
outcomes of the current investigation are new and have been
listed for the first time.

Remark 2. The authors successfully used a symbolic
computation system to check the correctness of the outcomes
of the current paper.

5. Conclusion

The principal aim of the current paper was to explore a newly
well-established model known as the Sharma–Tasso–Olver–
Burgers equation and derive its conservation laws and kink
solitons. The study proceeded systematically by constructing
the formal Lagrangian, Lie symmetries, and adjoint equations
of STOBE to acquire its conservation laws. Besides, kink
solitons of the STOBE were formally established using
Kudryashov and exponential methods. Various plots in 2 and
3D postures were graphically represented to observe the
dynamical characteristics of kink solitons. Based on infor-
mation from the authors, the outcomes of the current

Figure 2. The kink soliton ( )u x t,2 for a 1,1 = - b 1,0 = b 1,2 = c 0.15,1 = c 0.15,2 = and a 2.7.=

Figure 3. u2
KM and u2

EM for above parameters when t 0.=
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investigation are new and have been listed for the first time.
The authors’ suggestion for future works is employing newly
well-organized methods [38–44] to acquire other wave
structures of STOBE.
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