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Abstract
This study investigates the perturbed Chen–Lee–Liu model that represents the propagation of an
optical pulse in plasma and optical fiber. The generalized exponential rational function method is
used for this purpose. As a result, we obtain some non-trivial solutions such as the optical
singular, periodic, hyperbolic, exponential, trigonometric soliton solutions. We aim to express
the pulse propagation of the generated solutions, by taking specific values for the free parameters
existed in the obtained solutions. The obtained results show that the generalized exponential
rational function technique is applicable, simple and effective to get the solutions of nonlinear
engineering and physical problems. Moreover, the acquired solutions display rich dynamical
evolutions that are important in practical applications.

Keywords: perturbed Chen–Lee–Liu model, generalized exponential rational function method,
analytical solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

Researchers have taken great attention to study nonlinear
phenomena. Nonlinear partial differential equations (NPDEs)
appear in applied mathematics and engineering research areas
with various applications. Several goals of applied mathe-
matics are presented to identify and explain exact solutions
for NPDEs [1–8]. Numerous NPDEs such as the Sawada–
Kotera equation [9–11], the Gilson–Pickering model [12, 13],
the Fokas–Lenells model [14–16], the Hirota equation
[17, 18], the Sasa–Satsuma equation [19–21], and others
[22–31] have been discussed and analyzed in different bran-
ches of science

The perturbed CLL model is given by [32]:

i i i

, 1
t xx x x

m
x

m
x

2 2

2

∣ ∣ [ (∣ ∣ )
(∣ ∣ ) ] ( )

y ay b y y gy m y y
d y y
+ + = +

+

where g is the inter-modal dispersion coefficient, m symbo-
lizes the coefficient of self-steepening for short pulses, and d

is the coefficient of nonlinear dispersion. Additionally, a is
the coefficient of the velocity dispersion and b is the coeffi-
cient of nonlinearity. Here, equation (1) is studied when
m 1=

i i i .
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The main object of this article is to study and analyze
equation (2) by finding a variety of solutions via the GERFM
for the perturbed CLL model that represents the propagation of
an optical pulse in plasma and optical fiber. Recently, the field
of applications of this equation has become an important part of
plasma physics. Previously this equation has been investigated
by many researchers. Houwe et al [33] show the chirped and
the corresponding chirp with their stability for the CLL model.
Biswas has obtained soliton solutions by using semi-inverse
variational principle [34]. Akinyemi and others studied the CLL
model with the help of the Jacobi elliptic functions [35].
Kudryashov found general solutions by using different methods
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with the elliptic function approach [36]. Apart from this, the
Sardar subequation technique was utilized to obtain solitary
wave solutions for this equation [37], and numerous studies
have been done for the CLL model [38–40]. In this study, we
examine this model via the generalized exponential rational
function method (GERFM). This method is presented by
Ghanbari and others to study different partial differential
equations [41, 42]. Furthermore, Ghanbari and Aguilar used this
approach to find some novel solutions of the Radhakrishnan–
Kundu–Lakshmanan equation with b-conformable time deri-
vative [43].

This study is organized as follows; introduction is given
in section 1. In section 2, we focused on presenting the
GERFM. In section 3, we established and studied a variety of
exact solutions for the perturbed CLL model by applying the
GERFM. The conclusion and the physical interpretations of
this study are presented in section 4.

2. Outline of GERFM

In this section, the GERFM is explained in the following manner:
Step 1: Consider the general form of a nonlinear partial

differential as:

Q , , , , , , 0, 3x t xx tt tx( ) ( )y y y y y y =

where Q is a polynomial function in x t,( )y and its partial
derivatives. Suppose that the wave transformation takes the
form:

x t P x ht, e , , 4kx wti( ) ( ) ( )( )y h h= = -q- + +

where P ( )h is the amplitude, k is the wave number, w is the
frequency, q is the phase constant, and x ht- is the traveling
coordinate. Equation (3) becomes a nonlinear ordinary diff-
erential equation with the use of equation (4) and written as:
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Step 2: The solitary wave solutions of equation (5) have
the form:
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here r ,n sn n1 4( )  are real / complex constants, A ,0 A ,K

BK are constants to be determined, and n will be determined
by the known balance principle.

Step 3: Substituting equation (6) into equation (5), we
get a system of polynomials in .( )j h By equating the same

order terms, we obtain an algebraic system of equations. By
using any suitable computer software, we solve this system
and determine the values of A ,0 A ,K B .K Thus, we can easily
obtain non-trivial exact solutions of equation (5).

Step 4: Putting non-trivial solutions obtained from Step 3
into (6), we attain the exact soliton solutions of equation (2).

3. Applications

In this portion, we apply the GERFM to equation (2). Firstly,
inserting equation (4) into equation (2) yields

8
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The real part of equation (8) is given by

w k k P P k P 0, 92 3( ) ( ) ( )a g a b m- - - + + - =¢¢

and the imaginary part has the form

h k P P P2 3 2 0. 102( ) ( ) ( )a g b m d- - - ¢ + - - ¢ =

Set the coefficients of the components of the imaginary
part equal zero, we get h k2 ,a g= - - and 3 2 .b m d= +
Considering these constraints in equation (9), we get

w k k P P k P2 0. 112 3( ) ( ) ( )a g a d m- - - + + + =¢¢

By using the balance principle, we get n 1.= Also, we
use r r r r r, , ,1 2 3 4[ ]= and s s s s s, , ,1 2 3 4[ ]= notation. Con-
sidering equations (6) and (7), we may express the solution of
equation (11) as follow:
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Considering h k2 ,a g= - - the exact solution of
equation (2) reads

This is corresponding to optical exponential solutions.
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Case 2: When A 0,1 = A ,B
0
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Taking into account equation (12), equation (13) and the above values in equation (4), we get
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Considering h k2 a g= - - yields the exact solution of equation (2) as

Equation (15) represents optical exponential solutions.
Family 2: For this group, we take r 2 i, 2 i, 1, 1 ,[ ]= - - - - s i, i, i, i ,[ ]= - - we get
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Considering h k2 ,a g= - - we reach the exact solution of equation (2) as
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This is corresponding to optical trigonometric solutions under conditions 0,a > k 0.( )d m+ <
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Taking into account equation (12), equation (16), and these values in equation (4), we get

x t
k

x ht x ht x ht

k

,
2

csc cos 2 sin
e .kx wt

4

i

⎜

⎟

⎛

⎝

⎞

⎠

( )
( )

( )( ( ) ( ))
( )

( )

y
a
d m

a
d m

= -
- +

+
- - + -

- +
q- + +

x t

B B

,

3

4

1 e

2 e
e . 15

x t w
k

B k B k

x t w
k

B k B k

kx wt

2

1 1
1
2

1
8

1 2

1
2

1
8

1 2

i
1
2 2

1
2 2

1
2 2

1
2 2

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )

( )

( ) ( )
( ) ( )( )

( ) ( )( )
( )

y

= +
+

- -

d m d m

d m d m

q
- + + - + +

- + + - + +

- + +

cos 2 sin

sin
. 16( ) ( ) ( )

( )
( )j h

h h
h

=
+

3

Commun. Theor. Phys. 74 (2022) 075005 S Tarla et al



Considering h k2 ,a g= - - we get the exact solution of equation (2) as follows
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Equation (18) is corresponding to the optical trigonometric solutions under conditions 0,a > k 0.( )d m+ <
Family 3: In this group r 2, 0, 1, 1 ,[ ]= s 1, 0, 1, 1 ,[ ]= - - we get
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Taking into account equation (12), equation (19), and these values in equation (4), we obtain
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Considering h k2 ,a g= - - we get the exact solution of equation (2) as follows
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This is corresponding to the optical hyperbolic solutions under conditions 0,a > k 0.( )d m+ <
Family 4: For r 1, 1, 1, 1 ,[ ]= - s 1, 1, 1, 1 ,[ ]= - - we get
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Considering h k2 ,a g= - - the exact solution of equation (2) takes the form
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This is corresponding to the optical singular soliton solutions under conditions 0,a > k 0.( )d m+ <
In figure (4), the amplitude of the solution given is very high in the medium through which the wave is propagated, thus

this singular periodic wave is a shock wave.
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Taking into account equation (12), equation (23), and these values in equation (4), we obtain
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Considering h k2 ,a g= - - the exact solution of equation (2) takes the form
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This is corresponding to the optical periodic soliton solutions under conditions 0,a > k 0.( )d m+ <
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Taking into account equation (12), equation (23) and these values in equation (4), we get
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Considering h k2 ,a g= - - the exact solution of equation (2) is given by
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Equation (25) is corresponding to the optical periodic soliton solutions under conditions 0,a > k 0.( )d m+ <

Figure 1. Optical exponential solutions of equation (14) for the values of A 0.2,1 = w 2,= k 0.1,= 0.1,d = 0.2,m = and 1.3.q =

5

Commun. Theor. Phys. 74 (2022) 075005 S Tarla et al



Figure 2. Optical trigonometric solutions of equation (17) for the values of 2,a = k 1,= - 0.5,q = 0.6,m = 0.4,d = and w 0.2.=

Figure 3. Optical hyperbolic solutions of equation (20) where 1,a = w 1,= k 2,= - 2,d = 1,m = and 2.q =

Figure 4 Optical singular soliton solutions of equation (22) using 0.3,a = w 1.5,= k 2,= - 0.5,d = 0.02,m = and 0.2.q =
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4. Conclusion

Herein, we have divided our results into two main parts as
follows:

4.1. Overview

The current work recovered a variety of optical soliton
solutions with different wave structures for the perturbed CLL
model is obtained via the GERFM. According to the suitable
choice of the self-steepening short pulses m and the nonlinear
dispersion coefficient ,d the obtained solutions are classified
into optical singular, periodic, hyperbolic, exponential, and
trigonometric soliton solutions. Furthermore, the physical
meaning of these solutions is graphically investigated through
2D- and 3D- plots. To the best of our knowledge, these results
were obtained for the first time for this model. This kind of
study is helpful for a physician in planning and decision-
making for the treatment of optical pulse in plasma and
optical fibers.

4.2. The physical interpretation

In figures 1–5, as changing the values of m and ,d the rise
steepening of the wave will change. For different values of
the parameter ,a as an example, the velocity distribution of
the wave will be changed as seen in figure 3. In figure 4, when
the value of w is increased, the wavelength is decreased. This
feature is also observed in figures 1–5. In summary, the
obtained solutions are classified into the following categories:
equations (14) and (15) represent optical exponential solu-
tions, equations (17) and (18) investigate optical trigono-
metric solutions, equation (20) represents an optical
hyperbolic solutions, equation (22) shows an optical singular
soliton solution, and finally equations (24) and (25) introduce
optical periodic soliton solutions.
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