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Abstract
We generalize the Heisenberg star consisting of a spin-1/2 central spin and a homogeneously coupled
spin bath modeled by the XXX ring [Richter J and Voigt A 1994 J. Phys. A: Math. Gen. 27 1139-1149]
to the case of arbitrary central-spin size S<N/2, where N is the number of bath spins. We describe how
to block-diagonalize the model based on the Bethe ansatz solution of the XXX ring, with the dimension
of each block Hamiltonian� 2S+ 1. We obtain all the eigenenergies and explicit expressions of the
sub-ground states in each l-subspace with l being the total angular momentum of the bath. Both the
eigenenergies and the sub-ground states have distinct structures depending whether S� l or l< S. The
absolute ground-state energy and the corresponding l as functions of the intrabath coupling are
numerically calculated for N= 16 and S= 1, 2,L ,7 and their behaviors are quantitatively explained in
the weak and strong intrabath coupling limits. We then study the dynamics of the antiferromagnetic
order within an XXX bath prepared in the Néel state. Effects of the initial state of the central spin, the
value of S, and the system-bath coupling strength on the staggered magnetization dynamics are
investigated. By including a Zeeman term for the central spin and the anisotropy in the intrabath
coupling, we also study the polarization dynamics of the central spin for a bath prepared in the spin
coherent state. Under the resonant condition and at the isotropic point of the bath, the polarization
dynamics for S> 1/2 exhibit collapse-revival behaviors with fine structures. However, the collapse-
revival phenomena are found to be fragile with respect to the anisotropy of the intrabath coupling.

Keywords: central spin model, Heisenberg XXX chain, ground state, antiferromagnetic order
relaxation, polarization dynamics
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1. Introduction

Quantum spin systems are important physical systems that can
exhibit many-body effects and strong correlations. They are ubi-
quitous in quantum magnetism, statistical physics, and more
recently, quantum information and quantum simulations. It is
generally challenging to theoretically study many-body spin sys-
tems due to the exponential growth of the dimension of the relevant
Hilbert space with the system size. In this context, exactly soluble
spin models play an important role in understanding the ground-
state and dynamical properties of general large-scale spin systems.

Two important classes of soluble spin models are spin
chains [1] and central spin models [2, 3], which can be solved by

using free-fermion techniques or the Bethe ansatz. Currently,
typical quantum spin chains such as the quantum Ising model
and the XXZ chain have been realized on different experimental
platforms [4, 5] and continue to attract the attention of theorists
[6, 7]. Central spin models are highly relevant to solid-state
setups that are promising candidates for performing quantum
information processing, including electrons trapped in quantum
dots [8] and nitrogen vacancy centers in diamond [9], etc.

In an early theoretical work, Richter and Voigt proposed
a spin model that combines the above two types of soluble
models, i.e. a spin-1/2 central spin model and an anti-
ferromagnetic XXX periodic chain [10], with the intention
of investigating the effect of central-spin induced frustration
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on the ground-state properties of the latter. Such a composite
spin system, named a Heisenberg star, is originally considered as
an antiferromagnetic chain with a perturbation and has several
conserved quantities that ensure the solvability of the model.
Alternatively, the Heisenberg star can also be viewed as a central
spin system in the presence of nearest-neighbor intrabath inter-
actions. Recently, the solvability and real-time dynamics of
higher-spin central spin models with/without intrabath interac-
tion are studied and a richer variety of physical properties are
observed compared to the spin-1/2 counterpart [11, 12].

In this work, we extend the spin-1/2 Heisenberg star to the
case of a higher central spin of size S�N/2, where N is the
number of sites in the XXX ring. Following [13], in which the
coherence dynamics of a spin-1/2 Heisenberg star in the presence
of an external magnetic was studied, we first describe how to
block-diagonalize a spin-S Heisenberg star based on the Bethe
ansatz solutions of the XXX ring. The dimensions of the resultant
block Hamiltonians are at most 2S+ 1. With the help of the
conserved quantities of the system, we then obtain all the
eigenenergies of the model in terms of the quantum numbers l
and j, where l and j are the total angular momenta of the XXX
bath and the whole system, respectively. Similar to the case of
S= 1/2, the sub-ground state energy in the l-subspace depends
only on l. However, we find that these sub-ground state energies
have different structures depending whether S� l or l< S. Based
on these results, we numerically calculate the absolute ground
state energy and the corresponding bath angular momentum as
functions of the intrabath coupling for an XXX bath of N= 16
sites. The dependence of these quantities on varying S is analy-
tically analyzed in the weak intrabath coupling. We derive closed-
form expressions of the 2j+ 1 degenerate sub-ground states in the
l-subspace, which can be written as a sum of tensor products of
the central-spin state and the degenerate sub-ground states of the
XXX bath, with the coefficients being determined analytically.

We are also interested in the real-time dynamics of the Hei-
senberg star. As observed in [13], for a star prepared in a pure state,
the dynamics of any observable belonging to the central spin do not
depend on the intrabath coupling, and hence are equivalent to the
result for a noninteracting bath. Rather than focusing on the central
spin dynamics, we study the staggered magnetization dynamics
within the XXX bath when it is prepared in the Néel state. This is
motivated by a theoretical investigation of the relaxation of anti-
ferromagnetic order in a spin-1/2 XXZ chain following a quantum
quench [14]. We reveal the influence of central-spin size, the
central-spin initial state, and the system-bath coupling strength on
the staggered magnetization dynamics. Some of the observed
dynamical behaviors are consistent with those obtained in an
inhomogeneous Heisenberg star [12]. For example, increasing the
size of the central spin and adopting a superposed central-spin
initial state can both accelerate the initial decay of the anti-
ferromagnetic order, while these effects become less prominent in
the strong intrabath coupling regime. It is intriguing that although
the central spin dynamics are independent of the intrabath coupling,
the magnetic order within the bath exhibits rich and robust dyna-
mical behaviors even for homogeneous system-bath coupling.

We finally study the central-spin polarization dynamics for
a slighted modified spin-S Heisenberg star in the presence of an
external magnetic field and with anisotropic intrabath coupling.

Following [15–17], we choose the spin coherent state as the
bath initial state. We demonstrate that at the isotropic point of
the bath the central spin dynamics from the spin coherent state
are the same as that for a noninteracting bath. For an XXX bath
with S= 1/2, we recover the prior results presented in [16]. For
S> 1/2, we find that the polarization dynamics exhibit col-
lapse-revival behaviors with fine structures under the resonant
condition. However, the collapse-revival phenomena are
destroyed once the anisotropic intrabath coupling is introduced.

The rest of the paper is organized as follows. In section 2,
we introduce the spin-S Heisenberg star and its conserved
quantities. In section 3, we study the eigenenergies of the
model in detail and obtain expressions of the sub-ground state
energies in each l-subspace. In section 4, we describe the
block diagonalization procedure using the Bethe ansatz
solution of the XXX bath and derive explicit expressions for
the degenerate sub-ground states in each l-subspace. In
section 5, we study in detail the dynamics of the Heisenberg
star for baths prepared in the Néel state and the spin coherent
state. Conclusions are drawn in section 6.

2. Model and conserved quantities

The Heisenberg star was first introduced in [10] and is
described by the Hamiltonian (see figure 1)
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Here, HB describes a spin-1/2 periodic Heisenberg XXX
spin chain with antiferromagnetic nearest-neighbor coupling

Figure 1. A spin-S Heisenberg star consists of a central spin of size S
and a homogeneously coupled XXX ring. The system-bath
(intrabath) coupling is of XXX-type with strength g (J).
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strength J> 0. The interaction between the central spin S


with size S and the XXX spin bath is of isotropic Heisenberg
type and the coupling strength is measured by g> 0. The
static properties of H for S= 1/2 were studied in detail in
[10], but here we allow for arbitrary values of S with S< N/2.

We define the total spin of the whole system as

 S L, 2( )= +
  

where

L S 3
n

N

n
1

( )å=
=

 

is the total spin of the XXX bath. We can rewrite HSB in
terms of S


and L


as

H gS L. 4SB · ( )=
 

It is easy to check the following commutation relations
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The last relation indicates that we can diagonalize HB and
HSB separately. Due to the high symmetry of the model, any
eigenstate |ψE,j,m,l〉 can be labelled by four quantum numbers
E, j, m, l, which belong to the conserved quantities H, 2

,z,

L
2
, respectively. For simplicity, we assume that N is an even

integer. In the discussion of static properties of the spin-S
Heisenberg star (section 2), we further assume that S is an
integer (the case of half-odd-integer S can be similarly ana-
lyzed). In order to obtain universal size-independent results,
we use the collective coupling g g N˜ º as an overall energy
scale throughout this work.

From the relation S L S L 2
2 2 2· ( )= - -

    
, we can

further rewrite H as

H JH
g

S L
2

, 6b
2 2 2( ) ( )= + - -
  

where H S Sn
N

n nb 1 1·= å = +
 

.

3. Eigenenergies

All the eigenenergies of the spin-S Heisenberg star can be
determined from equation (6) once the spectrum of the bath
Hamiltonian Hb is solved. We first review the eigenenergy
structure of an isolated XXX ring, based on which we con-
struct all the eigenenergies of the Heisenberg star.

3.1. Energy levels of an isolated XXX ring

For completeness, let us first review some known results
about the pure XXX ring described by Hb. It is well known
that the eigenenergies and eigenstates of the XXZ chain can
be solved by using the coordinate Bethe ansatz within indi-
vidual sectors possessing fixed magnetization [1]. For the
isotropic XXX chain, the total angular momentum L


is further

conserved, yielding simpler state structures and increasing
degrees of the degeneracy of the energy levels.

For even N, the addition of the N spins-1/2 in the ring
results in N/2+ 1 total angular momenta l= 0, 1, L ,N/2,
where a fixed l appears (Cm

n m

n m n

!
!( )!

=
-

is the binomial coef-

ficient and vanishes for n>m)
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l N
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times [18]. Since H L H L, , 0zb
2

b[ ] [ ]= =


, any eigensate of
Hb can be written as E l l l, ,l

mb
∣ ( )( )f ña , where E lb

l ( )( )a is the
corresponding eigenenergy with the superscript αl= 1, 2,
L ,dN,l distinguishing the energy levels having the same
value of l, and lm is the eigenvalue of Lz. Note that E lb

l ( )( )a

does not depend on lm and is (2l+ 1)-fold degenerate,
with the corresponding degenerate eigenstates ,E l l, ,l

b
{∣ ( )f ñ-a
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leading to a consistency.
If we assume that   E l E l E ld

b
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b
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b
N l,( ) ( ) ( )( ) ( ) ( ) , then

the Lieb–Mattis–Marshall theorem [19, 20] tells us that the
sub-ground state energy E lb

1 ( )( ) in every l-subspace satisfies

E l E l 1 . 9b
1

b
1( ) ( ) ( )( ) ( )< +

Moreover, the lowest-energy state for fixed lm is just

E l l, ,m mb
1∣ ∣ ∣( )f ñ, which is nondegenerate in this lm-subspace and

possesses energy E lmb
1 (∣ ∣)( ) . In other words, E lb

1 ( )( ) is the
lowest energy level in magnetization sector with lm= l. A
direct consequence of these results is that the global ground
state of Hb is a unique singlet E ,0,0b

1∣ ( )f ñ.

3.2. Eigenenergies of the spin-S Heisenberg star

Let us now turn back to the spin-S Heisenberg star.
Depending on whether S� l or S> l, the total angular
momentum j of the star is accordingly determined by:

(1) For fixed l satisfying  S l N

2
, the addition of l and S

gives the following 2S+ 1 different values of j

j l s s S S S, , 1, , . 10( )= + = - - + 

According to equation (6), for a given l, the eigenenergy
for a fixed s (and hence for a fixed j= l+ s) is

E l s JE l
g

s s l S S,
2

2 1 1 .

11

b
2l l( ) ( ) [ ( ) ( )]

( )

( ) ( )= + + + - +a a

The energy level E l s,l ( )( )a is (2j+ 1)-fold degenerate since
the 2j+ 1 states m j j j, 1, ,E l s j m l, , , ,l∣ ( )( )( )y ñ = - - +a 
possess the same energy and are connected by the raising or
lowering operator . We are interested in the lowest
eigenenergy for a fixed l, i.e. the sub-ground state energy in
the l-subspace. By noting that s2+ s(2l+ 1) is an increasing
function of s for s>− (l+ 1/2), the second term in
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equation (11) is minimized for s=− S. Thus, the sub-
ground state energy in the l-subspace with  S l N

2
is

E l E l S JE l gS l, 1 , 12gs 1
b
1( ) ( ) ( ) ( ) ( )( ) ( ) ( )º - = - +

which is [2(l− S)+ 1]-fold degenerate with the corresp-
onding eigenstates E l l S m l, , ,gs{∣ }( )( )y ñ- , − (l− S)�m�
l− S. Since JE lb

1 ( )( ) is an increasing function of l for
J> 0 and− gS(l+ 1) is a decreasing function of l for
g> 0, there exists a competition between the two terms
in E(gs)(l) and there must be some l= l> that minimizes
E(gs)(l).

(2) For fixed l satisfying 0� l< S, j can take values

j S s s l l l, , 1, , . 13( )= + = - - + 

The eigenenergy for fixed l and j is

E l s JE l
g

s s S l l

,

2
2 1 1 . 14
b

2

l l( ) ( )

[ ( ) ( )] ( )

( ) ( )=

+ + + - +

a a

Similarly, the sub-ground state in the l-subspace with
0� l< S is achieved for s=− l:

E l E l l JE l gl S, 1 , 15gs 1
b
1( ) ( ) ( ) ( ) ( )( ) ( ) ( )º - = - +

which is [2(S− l)+ 1]-fold degenerate. There exists a
certain l= l< that minimizes E(gs)(l) for 0� l< S.

Once E(gs)(l<) and E(gs)(l>) are obtained, the absolute
ground state energy of H is simply

E l E l E lmin , , 16G G gs gs( ) { ( ) ( )} ( )( ) ( ) ( ) ( )= < >

where l(G) is the total angular momentum of the bath in the
global ground state.

The main panel of figure 2 shows the ground-state energy
E(G)(l(G)) as a function of J g̃ for N= 16 and S= 1, 2, L ,7.
We observe that:

(i) For fixed J g̃, the ground-state energy E(G) decreases
with increasing S. In the large J g̃ limit, E(G) converges
to the result of S= 0 (or of a pure XXX chain) for
different values of S.

(ii) For fixed S, E(G) is a nonmonotonic function of J g̃,
indicating that there might exist level crossings at
certain values of J g̃.

(iii) In the small J g̃ limit, E(G) increases linearly with
increasing J g̃ and the energy difference for adjacent
Sʼs is a constant.

The above behaviors of E(G) can be understood by inspecting
equations (12) and (15). In the large J g̃ limit, the system-
bath coupling can be viewed as a perturbation for the XXX
ring and the first terms in equations (12) and (15) are
dominated, which explains the convergence of E(G) to the
result for S= 0.

Since the ground-state energy E(G)(l(G)) depends only on
the bath angular momentum l(G), it is expected that the

nonmonotonic behavior of E(G)(l(G)) and the associated level
crossings are caused by the sudden change of l(G). To this
end, we plot in the inset of figure 2 the evolution of l(G) with
varying J g̃. It can be seen that l(G) shows plateaus that
decrease from l(G)= N/2 to l(G)= 0 as J g̃ increases.
Actually, in the small J g̃ limit, the second terms in the
ground-state energy E(gs)(l) dominate, resulting in E(gs)(l)≈
− gS(l+ 1) for S� l� N/2 and E(gs)(l)≈− gl(S+ 1) for
0� l< S. For fixed S<N/2, it is apparent that l(G) tends to
take its largest possible value, i.e. l(G)= N/2, as can be seen
from the inset of Fig 2. We also observe that the transition
point from l(G)= N/2 to l(G)= N/2− 1 increases with
increasing S. To understand this phenomenon as well as
observation (iii), we will look at the small J g̃ limit in detail,
where some analytical results for E(G) are available.

3.3. Analytical results in the small J ~g= limit

For l(G)= N/2 and N/2− 1, the sub-ground state energy
E l G

b
1 ( )( ) ( ) of the XXX chain admits analytical expressions. To

find out the transition point from l(G)= N/2 to l(G)=
N/2− 1, we first study the case of l(G)=N/2> S. From
equation (12), we have

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

E

g

J

g
E

N g

g
S

N

N J

g

S

N

N

2 2
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4 2
1 , 17

G N

2
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1
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˜ ˜ ˜

˜
( )

( )
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= - +

where we used E N 4N
b

1
2( )( ) = / for the fully polarized state.

This explains the initial linear increase of E l gG G( ) ˜( ) ( ) before
the first transition occurs. The slope is N/4 for all S and the
energy difference for adjacent Sʼs is a constant N 2 1

N

1 ( )+/
in this linear region.

For l(G)= N/2− 1, the condition S� l(G) is still satis-
fied. We thus have E N g JE N2 1 2 1G

b
1( ) ˜ ( )( ) ( )- = -/ / / /

g gS gN

2
˜ ˜- . According to the Lieb–Mattis–Marshall theorem,
E(G)(N/2− 1) is the eigenenergy of the lowest single-magnon

Figure 2. Main panel: the ground-state energy E gG ˜( ) as a function
of J g̃ for a spin-S Heisenberg star with N= 16 bath spins. Results
for S= 1, 2, L ,7 are shown. The dashed black line represents the
result for a pure XXX chain or a Heisenberg star with S= 0. Inset:
the evolution of total angular momentum of the bath, l(G), as J g̃
increases.
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state. It is known that the single-magnon dispersion for the
XXX chain Hb is [21]

 k
N

k
4

1 cos , e 1, 18kN
1

i( ) ( ) ( )= - - =

which gives E k1 0 2N N
b

1
2 1 4

( ) ( )( ) - = = = - , and hence

⎛
⎝

⎞
⎠

E

g

N J

g
S N

1

4
2

1

2
. 19

G N

2
( )

˜ ˜
( )

( ) -
= - -

We see that E N g2 1G ( ) ˜( ) - is also a linearly increasing
function of J g̃ before the transition l(G)=N/2− 1→
N/2− 2 occurs, but the slope is reduced to N/4− 2 compared
to the case of l(G)=N/2. The transition point for l(G)=
N/2→N/2− 1 is determined by

E

g

E

g

1
, 20

G N G N

2 2
( )

˜

( )

˜
( )

( ) ( )

=
-

yielding the transition coupling strength

J

g

S

N2
, 21

˜
( )=

which is actually a linear function of S (inset of figure 2, the top
horizontal lines).

4. Eigenstates

Let us now turn to study the eigenstates of the spin-S Hei-
senberg star. We first briefly describe how to obtain all the
eigenstates of the Heisenberg star with the help the Bethe
ansatz solution of the XXX chain, which divides the full
Hilbert space into invariant subspaces of at most 2S+ 1
dimensions. We then focus on the sub-ground states within
the sector with fixed l and derive closed-from expressions of
these states in terms of the sub-ground states of the XXX
chain in the l-sector.

4.1. General eigenstates: the Bethe ansatz method

We closely follow [13, 22] to construct invariant subspaces of
H based on the Bethe ansatz solution of the XXX bath HB. The
Bethe states of HB with M� N/2 spin flips are of the form

B B F, , , 22M M1 1∣ ( ) ( )∣ ( )l l l lñ = ñ 

where {λj} are the Bethe roots determined by the Bethe ansatz
equations, B(λi) is the spin-flipping operator appearing in the
so-called monodromy matrix [22], and |F〉= | ↑L ↑ 〉 is the
fully polarized reference state.

It is known that the Bethe state given by equation (22) is
the highest weight state of the su(2) Lie algebra generated by
the bath operators (L±, Lz). By successively applying the
lowering operator L− to the Bethe states, we can obtain
the (N− 2M+ 1)-fold degenerate manifold corresponding to
the eigenenergy EB(λ1, L ,λM), which satisfies the Schrö-
dinger equation HB|λ1, L ,λM〉= EB(λ1, L ,λM)|λ1, L ,λM〉.
Explicitly, we define [13]

n C L, , ; , , , 23M M n
n

M1 , 1∣ ( ) ∣ ( )l l l lñ = ñ-
- 

where  N M2= - is the magnetization of the Bethe
state |λ1, L ,λM〉,   n , 1, ,= - - , and CM,n is a
suitable normalization coefficient. The degenerate states given
by equation (23) satisfy the following relations,

 

L n n n

L n n n

n

, , ; , , ; ,

, , ; 1

, , ; 1 . 24

z M M

M

M

1 1

1

1

∣ ∣
∣ ( )( )

∣ ( )

l l l l

l l
l l

ñ = ñ

ñ =  +
´  ñ


 

 


It is obvious that L , , ; 0M1∣l l  ñ =  .
Having the above eigenstates of the XXX chain in hand,

the base states for the spin-S star are

S n, , ; ,m M1{∣ ∣ }l lñ ñ

where Sm= S, S− 1, L , − S, M= 0, 1, L ,N/2, and
  n , 1, ,= - - . By rewriting the Hamiltonian as

H H g S L S L gS Lz zB
1

2
( )= + + ++ - - + , it can be easily seen

that the two states S , , ;M1∣ ∣l lñ ñ and S , , ;M1∣ ∣l l- ñ - ñ
are simple eigenstates of H with the same eigenenergy

E gS, , MB 1( )l l + . For S nm + ¹  , we apply H to the
state |Sm〉|λ1, L ,λM; n〉 to get

 

 

H S n E gn S n
g

S S S S n n

S n
g

S S S S n n

S n

, , ; , , ;

2
1 1

1 , , ; 1

2
1 1
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l l
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+ - + + + - +

´ + ñ - ñ

+ + - + - + +

´ - ñ + ñ

 





Unlike the case of S= 1/2 where |1/2〉|λ1, L ,λM; n〉 and
|− 1/2〉|λ1, L ,λM; n+ 1〉 already form a closed subspace [13],
for a general S�N/2 we need to further apply H to the newly
generated states |Sm+ 1〉|λ1, L ,λM; n− 1〉 and |Sm− 1〉|λ1,
L ,λM; n+ 1〉 to obtain a multi-dimensional invariant subspace.

For S� N/2, these invariant subspaces can be classified
into three categories:

(I) For− S− N/2�m� S−N/2 with m= Sm+ n the
total magnetization of the star, the configurations of
(Sm, n) that conserve m are (− S, m+ S), L ,(m+ N/2,
− N/2). The dimension of the corresponding invariant
subspace is therefore m+ N/2+ S+ 1� 2S+ 1.

(II) For S− N/2+ 1�m�− S+N/2− 1, the configura-
tions of (Sm, n) that conserve the total magnetization are
(− S, m+ S), L ,(S, m− S). The dimension of the
corresponding invariant subspace is 2S+ 1.

(III) For− S+ N/2�m� S+N/2, the configurations of
(Sm, n) that conserve the total magnetization are
(m− N/2, N/2), L ,(S, m− S). The dimension of
the corresponding invariant subspace is S−m+N/
2+ 1� 2S+ 1.

In this way, the whole Hilbert space of the spin-S Heisenberg
star is divided into invariant subspaces whose dimensions are
at most 2S+ 1. In principle, we can numerically diagonalize
the block Hamiltonians to obtain all the eigenstates and
eigenenergies of the system.
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The Bethe ansatz method presented above is also applic-
able when a Zeeman term ωSz of the central spin is included
[13]. In this case, the total angular momentum 


is no longer

conserved since  S S L S, 2 , 0z z
2[ ] [ · ]= ¹
  

, so that the state
|ψE,j,m,l〉 is not well-defined. However, if the Heisenberg star H
given by equation (1) (in the absence of the Zeeman term) is
mainly concerned, the states {|ψE,j,m,l〉} provide a more con-
venient form to analyze the eigenstate structure of H.

Corresponding to the two types of eigenenergies given
by equations (11) and (14), the number of eigenstates

E j m l, , ,l{∣ }( )y ña can be counted as

 d l s

d S s

2 1

2 1 . 26

l S
N l

s S

S

l

S

N l
s l

l

,

0

1

,

N
2

[ ( ) ]

[ ( ) ] ( )

å å

å å

= + +

+ + +

= =-

=

-

=-

It can be checked that  is identical to the total dimension of
the Hilbert space (2S+ 1)2N. Below we focus on the sub-
ground states for fixed lʼs. As we will see, these sub-ground
states admit closed-form expressions in terms of the sub-
ground states of the pure XXX ring.

4.2. Sub-ground states for S� l � N
2

For fixed l� S, the sub-ground states E l l S m l, , ,gs{∣ }( )( )y ñ- have
total spin j= l− S, and satisfy

H E l , 27E l l S m l E l l S m l, , ,
gs

, , ,gs gs∣ ( )∣ ( )( )
( )

( )( ) ( )y yñ = ñ- -

where− (l− S)�m� l− S and E l JE l gl S 1gs
b
1( ) ( ) ( )( ) ( )= - + .

For fixed m, we have− l�m− Sm� l for all− S� Sm� S, so
that E l l S m l, , ,gs∣ ( )( )y ñ- is of the form

A S , 28

E l l S m l

S S

S

S m E l m S

, , ,

, ,
m

m m

gs

b
1

∣

∣ ∣ ( )

( )( )

( )å

y

f

ñ

= ñ ñ

-

=-
-

where |Sm〉 is the eigenstate of Sz with eigenvalue Sm, E l m S, , mb
1∣ ( )f ñ-

is the lowest eigenstates of Hb for fixed l and lm with energy
E lb

1 ( )( ) , and the Aʼs are coefficients to be determined by
equation (27).

After a tedious but straightforward calculation, we arrive
at the following unnormalized sub-ground state (see the
appendix for the derivation)

C

l m S l m S

l m S l m S
S

1

.
29

E l l S m l
S S

S
S S

S
S S

m m
m E l m S

, , , 2

, ,

m

m m

m

gs

b
1

∣ ( )

( )!( )!
( )!( )!

∣ ∣
( )

( )( )

( )

åy

f

ñ = -

´
+ - - +
+ - - +

ñ ñ

-
=-

- +

-

In particular, the highest-weight state E l l S l S l, , ,gs∣ ( )( )y ñ- - can be
normalized as (see appendix)

30

l S S

l

l S S

S S
S

2 2 1 2
2 1

1
2

.

E l l S l S l

S S

S
S S m

m
m E l l S S

, , ,

, ,
m

m
m

gs

b
1

( )

∣ ( )( )!
( )!

( ) ( )!
( )!

∣ ∣

( )( )

( )å

y

f

ñ =
- +

+

´ -
- -
-

ñ ñ

- -

=-

-
- -

Note that the sub-ground states do not depend on the coupling
strengths J and g but are determined by the quantum number l.

4.3. Sub-ground states for 0� l< S

For fixed 0� l< S, the sub-ground states E l S l m l, , ,gs{∣ }( )( )y ñ-
have total angular momentum j= S− l and satisfy

H E l , 31E l S l m l E l S l m l, , ,
gs

, , ,gs gs∣ ( )∣ ( )( )
( )

( )( ) ( )y yñ = ñ- -

where− (S− l)�m� S− l. For fixed m, we have− S�
m− lm� S for all− l� lm� l. The most general form of

E l S l m l, , ,gs∣ ( )( )y ñ- is

B m l . 32E l S l m l
l l

l

l m E l l, , , , ,
m

m m
gs

b
1∣ ∣ ∣ ( )( )( ) ( )åy fñ = - ñ ñ-

=-

It can be similarly shown that [by making the substitutions
S→ l, l→ S, Sm→ lm in equation (29)]

C

S m l S m l

S m l S m l
m l

1

.

33

E l S l m l
l l

l
l l

l
l l

m m
m E l l

, , , 2

, ,

m

m m

m

gs

b
1

∣ ( )

( )!( )!
( )!( )!

∣ ∣
( )

( )( )

( )

åy

f

ñ = -

´
+ - - +
+ - - +

- ñ ñ

-
=-

- +

5. Real-time dynamics

The spin-S Heisenberg star given by equation (1) is so special
that it cannot generate any intrabath coupling-induced central-
spin dynamics. Suppose χS is an arbitrary observable belonging
to the central spin, its time evolution from an initial state |ψ(0)〉
is given by

t 0 e e 0 . 34Ht Ht
S

i
S

i( ) ( )∣ ∣ ( ) ( )c y c yá ñ = á ñ-

From H JH gS Lb ·= +
 

and [Hb, χS]= 0, we have H, S[ ]c =
g S L, S[ · ]c
 

, which is independent of the intrabath coupling
J. By noting that Hb is rotationally invariant, i.e. [Hb, Li]= 0, we
further have H H g S L S L, , , ,S

2
S[ [ ]] [ · [ · ]]c c=

   
, H H, ,[ [

H g S L S L S L, , , ,S
3

S[ ]]] [ · [ · [ · ]]]c c=
     

,L, giving tS( )cá ñ =
0 e e 0H t H ti

S
iSB SB( )∣ ∣ ( )y c yá ñ- . In other words, the time evolution

of any central-spin observable is independent of the intrabath
coupling J, and hence recovers the result for a noninteracting bath.

It is easy to see that including any central-spin term (such
as a Zeeman term or a single-ion anisotropy, etc.) does not
change the foregoing property, as has already been observed in
the investigation of the central spin coherence from a pure state
[13]. Thus, to obtain nontrivial dynamics of the central spin
induced by the intrabath coupling, one has to either include the
thermal effect [13] or to go beyond the homogeneous system-
bath coupling or isotropic intrabath coupling [12]. In spite of
these facts, the dynamics of any bath operator ηB depends on
both J and g since generally [Hb, ηB]≠ 0 and S L, 0B[ · ]h ¹

 
.

In this work, we first study the dynamics of the anti-
ferromagnetic order in the XXX bath governed by the spin-S
Heisenberg star H, with the XXX bath prepared in a Néel state.
We then study the central spin dynamics in a slighted general-
ized Heisenberg star with intrabath anisotropy. To be specific, in
this case, we choose the bath initial state as a spin coherent state.
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5.1. Dynamics of antiferromagnetic order in the spin-S
Heisenberg star

The dynamics of antiferromagnetic order in an XXZ bath with
inhomogeneous system-bath coupling and anisotropic intrabath
coupling have been thoroughly studied in a related work by the
authors [12]. Compare with the case of an isolated XXZ chain
[14], it is found that both the system-bath coupling and the size
of the central spin have significant influence on the relaxation of
the antiferromagntic order. We show that some of the dynamical
behaviors of the antiferromagnetic order observed in [12] for
inhomogeneous system-bath couplings are still robust in the
homogeneous Heisenberg star described by H.

We assume that the star is initially prepared in a product state

0 AF , 35S∣ ( ) ∣ ∣ ( )( )y fñ = ñ Ä ñ

where |f(S)〉 is the initial state of the central spin and the bath
initial state is chosen as the Néel state |AF〉= | ↓ ↑L ↓ ↑ 〉. For
arbitrary S<N/2, the dynamics of the spin-S Heisenberg star H
are simulated by using an equations-of-motion method based on
analytical expressions of spin-operator matrix elements for the
XX chain [24], see [12] for details of the method.

We consider two types of initial states for the central spin, i.e.
the polarized state |f(S)〉1= |S〉 and the equally weighted super-
position state S S S1

S
S

2
1

2 1
∣ (∣ ∣ ∣ )( )f ñ = ñ + - ñ+ + - ñ

+
 .

We are interested in the time evolution of the staggered magne-
tization

m
N

S
1

1 , 36
j

N
j

j
z

s
1

( ) ( )å= -
=

which is a measure of the antiferromagnetic order within the
XXX bath. Figure 3 shows the staggered magnetization dynamics
〈ms(t)〉 for an XXX bath with N= 12 sites and for a central spin
of size S= 3/2. For both types of the central-spin initial states
|f(S)〉1 and |f(S)〉2, we see that 〈ms(t)〉 decays more rapidly as the
intrabath coupling J increases, which is consistent with the case of
inhomogeneous system-bath couplings. Qualitatively, it is the
nearest-neighbor intrabath coupling that mainly controls the short-
time dynamics of the staggered magnetization.

For a fixed J g̃, we find that the state |f(S)〉2 induces a
faster initial decay of 〈ms(t)〉 compared to |f(S)〉1 since the
former is more widely distributed in the Hilbert space.
However, we observe that the difference between the two
becomes smaller and smaller as we enter the strong intrabath
coupling regime, where the system-bath coupling can be
viewed as a perturbation, making the dynamics insensitive to
the initial state of the central spin.

In figure 4 we plot 〈ms(t)〉 for different values of S and
intrabath coupling J. Generally, a larger S induces a faster
initial decay of 〈ms(t)〉 since there are 2S+ 1 channels for the
central spin to interact with the XXX bath. This behavior is
similar to that obtained for inhomogeneous system-bath
couplings [12]. As expected, the deviation in the dynamics for
different Sʼs becomes smaller when the intrabath coupling is
large enough (lower panels of figure 4).

5.2. Central spin dynamics in a modified Heisenberg star

The polarization dynamics of a qubit coupled to a non-
interacting spin bath prepared in the spin coherent state have
been studied in several previous works [15–17]. However, the
case of a larger central spin coupled to an interacting spin bath
is less studied. In this subsection, we will study the polar-
ization dynamics of the central spin when the bath is prepared
in a spin coherent state. As mentioned above, to get nontrivial
intrabath coupling-induced central spin dynamics, we have to
slightly modify the Heisenberg star given by equation (1):

H S J S S S S

J S S

g S S2 , 37

z
j

N

j
x

j
x

j
y

j
y

j
z

j
z

j
N

j

1
1 1

1

1

˜ [ ( )

]

· ( )

åw= + +

+ ¢

+ å

=
+ +

+

=

 

where ω is an external magnetic field, J and J ¢ are the in-plane
and Ising parts of the intrabath coupling strength, respec-
tively. Note that the bath angular momentum L

2
is no longer

conserved for J J¹ ¢. For J J= ¢ and S= 1/2, H̃ is reduced

Figure 3. Dynamics of the staggered magnetization 〈ms(t)〉 in a spin-
3/2 Heisenberg star with N= 12 bath spins. Two types of initial
states for the central spin is used, i.e. |f(S)〉1 = |S〉 and

S S S1
S

S
2

1

2 1
∣ (∣ ∣ ∣ )( )f ñ = ñ + - ñ+ + - ñ

+
 . The bath is initially

prepared in the Néel state |AF〉= | ↓ ↑L ↓ ↑ 〉.

Figure 4. Dynamics of the staggered magnetization 〈ms(t)〉 in a spin-
S Heisenberg star with N= 12 bath spins. Results for S= 1/2, 1,
and 3/2 are shown for fixed J g̃. The initial state of the central spin
is chosen as |f(S)〉1 = |S〉 and the bath is initially prepared in the Néel
state |AF〉= | ↓ ↑L ↓ ↑ 〉.
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to the model studied in [13], which conserves L
2
. If one

further sets J= 0, then H̃ is reduced to a qubit−big-spin
model [16], whose dynamics can be analytically solved by
using either a recurrence method [16, 23] or an interaction-
picture method [17].

The initial state of the whole system reads

S0 , 38∣ ( ) ∣ ∣ ˆ ( )y ñ = ñ Ä Wñ

where ∣Ŵñ is the spin coherent state of the bath defined by [25]

N N

Q
N

n
N

e e
2

,
2

2
,

2
, 39

L L

n
N

n

i i

0

z y∣ ˆ

( )

Wñ=

= å -

f q- -

=

withQ Cn
z

z N
n

1

n

N2 2( ∣ ∣ )
=

+
and z cot e

2
i= q f- . Here, n,N N

2 2
∣ - ñ

is the Dicke state belonging to l=N/2 and has magnetization
lm= n−N/2.

Let us first look at the case of an XXX bath with J J= ¢.
We have demonstrated that in this case, the central spin
dynamics is independent of the value of J, which can be seen
more straightforwardly by noting that the spin coherent state
∣Ŵñ is an eigenstate of JHb with eigenvalue NJ/4:

JH JH

N N NJ

e e

2
,

2 4
.

L L
b

i i
bz y∣ ˆ

∣ ˆ

Wñ =

´ = Wñ

f q- -

It is thus necessary to go beyond the isotropic point J J= ¢ in
order to observe nontrivial polarization dynamics induced by
the intrabath coupling. Nevertheless, let us first study the
effect of the value of S on the central spin polarization
dynamics for J J= ¢.

The top panel of figure 5 shows the polarization
dynamics 〈Sz(t)〉/S of an S= 1/2 central spin for J J= ¢ and
under the resonant condition ω= g [16]. It can be seen that
the polarization exhibits the so-called collapse-revival beha-
vior and the revival peaks occur at gt mN m( )p» Î ,
recovering the analytical results presented in [16]. The middle
and bottom panels of figure 5 show 〈Sz(t)〉/S for S= 1 and
S= 3/2, respectively. The polarization still shows collapses
and revivals during the evolution, but with rich fine structures.
For example, the initial revival region seems to show 2S
discrete sub-peaks before the first collapse occurs. These
structures reappear after the regular revival region consisting
of 2S+ 1 packets. We note that similar polarization dynamics
are observed in [23] for a spin-1 central spin homogeneously
coupled to a noninteracting spin bath.

To see the effect of the anisotropy of the intrabath cou-
pling on the polarization dynamics, we plot in figure 6
〈Sz(t)〉/S for S= 1/2 and several pairs of J g J g,( )¢ . It can
be seen that the collapse-revival behaviors are generally
destroyed, although for J J g, 1, 0.8( ) ( )¢ = and (1, 1.2) there
is some evidence of collapse (middle column of figure 6) at
short time since they are close to the isotropic point J J 1¢ = .
If we separate the term J J S Sj

N
j
z

j
z

1 1( )¢ - å = + out of H̃ , it is
easy to check that this term does not commute with the
remaining part of H̃ . As a result, the dynamics depends not
only on J J¢ - but also on J (right column of figure 6).

Actually, since the term J J S Sj
N

j
z

j
z

1 1( )¢ - å = + breaks the

conservation of L
2
, the time-evolved state will run out of the

l= N/2 subspace, making the collapse-revival phenomena
fragile with respect to anisotropic intrabath coupling.

6. Conclusions

In this work, we generalize the spin-1/2 Heisenberg proposed
by Richter and Voigt [10] to the case of arbitrary S<N/2.
Compared with the spin-1/2 counterpart, both the ground-
state and the dynamical behaviors are found to have richer
structures. In principle, the eigenenergies and eigenstates of the
system can be obtained by block diagonalizing the Hamiltonian
using the Bethe ansatz solution of the XXX bath, yielding
invariant subspaces whose dimensions do not exceed 2S+ 1.
Based on the four conserved quantities of the model, we obtain
all the eigenenergies of the model. The expressions of these
eigenenergies differ depending on whether S is larger or smaller
than the bath angular momentum l. The sub-ground state

Figure 5. Dynamics of the central-spin polarization 〈Sz(t)〉/S for
J J= ¢ and an XXX bath prepared in the spin coherent state ∣Ŵñ.
Parameters: N= 14,

2
q = p , f= 0, and ω= g.

Figure 6. Polarization dynamics of a qubit homogeneously coupled
to an XXZ bath with J J¹ ¢. Parameters: N= 14,

2
q = p , f= 0,

and ω= g.
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energies for fixed l depend only on the quantum number l. The
evolutions of the ground-state energy and the associated bath
angular momentum are numerically analyzed when the intrabath
coupling J and the central-spin size S are varied. We explain the
observed behaviors of these quantities in the weak and strong
intrabath coupling limits. We also derive closed-form expres-
sions for the degenerate sub-ground states in each l-subspace.

We then study the real-time dynamics of the spin-S Hei-
senberg star. Since the bath Hamiltonian commutes with the
whole Hamiltonian, the intrabath coupling has no effect on the
central spin dynamics if the system is prepared in a pure state. We
thus turn to study the antiferromagnetic order dynamics within the
XXX bath. Following [12], we set the bath initial state to be a
Néel state and investigate how the staggered magnetization
evolves under the combined influence of the intrabath coupling
and the system-bath coupling. We study the effects of the central
spin initial state, the central spin size, and the system-bath cou-
pling strength on the staggered magnetization dynamics and find
similar behaviors to the inhomogeneous coupling case [12].

We finally study the central-spin polarization for a bath
prepared in a spin coherent state. This is motivated by several
recent works in which the polarization dynamics of a spin-1/2
coupled to a noninteracting spin bath are thoroughly studied
[15–17]. To observe nontrivial polarization dynamics that
depend on the intrabath coupling, we extend the spin-S Hei-
senberg star by including a Zeeman term of the central spin and
the anisotropy in the intrabath coupling. At the isotropic point

of the bath, we find that the polarization dynamics for S> 1/2
exhibit collapse-revival behaviors with fine structures. How-
ever, for a spin bath with anisotropic coupling, the collapse-
revival phenomena are generally found to be destroyed.

As an exactly soluble model, there are some other aspects of
the spin-S Heisenberg star that deserve further investigation. For
example, it would be interesting to study the dynamics of
entanglement and quantum Fisher information and to understand
quantum metrology in the present model. The analytical calc-
ulation of spin correlations in the weak intrabath coupling limit
should be appealing. These studies will be left for future work.
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Appendix. Derivation of equation (29)

To derive equation (29), we apply the Hamiltonian
H JH g S L S L S Lz zb

1

2

1

2
( )= + + ++ - - + to the eigen-

state A SE l l S m l S S
S

S m E l m S, , , , ,m m m
gs

b
1∣ ∣ ∣( )( ) ( )y fñ = å ñ ñ- =- - :

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦
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By comparing the coefficients on both sides, we get

(1) For Sm= S,

A JE gS m S E l
g

A S l m S l m S
2

2 1 0. 41

S

S

b
1 gs

1

[ ( ) ( )]

( )( ) ( )

( ) ( )+ - -

+ + - + - + =-

(2) For− S< Sm< S,

42

A JE gS m S E l
g

A S S S S l m S l m S

g
A S S S S l m S l m S

2
1 1

2
1 1 0.
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b
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(3) For Sm=− S,
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By using E l JE gS l 1gs
b
1( ) ( )( ) ( )= - + , we have

(1) Sm= S:

A S l m S

A l m S

2 1
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S

S 1
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+ - + =-

(2) − S< Sm< S:
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To solve this coupled system of equations, we note that
equations (44) and (46) give (note that l−m− S� 0 and
l+m− S� 0)
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Setting Sm= S− 1 in equation (45) gives
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Combining equations (47) with (48) gives
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The forms of equations (47) and (49) suggest the following
ansatz:
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It is straightforward to verify that the above ansatz indeed
solves equation (45) for all− S< Sm< S.

Starting with AS, we find after iteration
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By inserting equation (51) into the wave function, we obtain
the unnormalized sub-ground state given by equation (29) in
the main text.

If we choose m= l− S, then
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whose squared norm is
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Thus, the normalized state E l l S l S l, , ,gs∣ ( )( )y ñ- - is given by
equation (30).
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