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It is undeniable that HIV infection has been a censorious public health concern over the past four
decades. It is reported that HIV is the main reason for AIDs which has decimated the global
population of humans and imposed a significant economic burden on affected areas. Hence, it is
significant to study the transmission of HIV viruses in the body of a human host. In this study,
we use a fractional framework to organise the intricate interactions of CD4" T-cells and HIV
viruses in order to investigate HIV infection with control interventions. We apply the operators
of Caputo and Atangana—Baleanu to interrogate the transmission phenomena of HIV viruses. For
the analysis of our system, we present the basic concepts of the fractional operators. Numerical
schemes are provided to show the solution pathways of the system with the variation of input
parameters. Furthermore, the findings emphasise the chaotic and dynamical behaviour of HIV.
We run several simulations to visualise the influence of input factors and quantitatively
illustrated the dynamics of HIV. Chaos and oscillatory behaviour are intimately linked, and this

is owing to the system’s nonlinearity. Furthermore, our findings indicate the most important

factors for infection control and prevention.

Keywords: fractional-calculus, HIV infection, dynamics of HIV, numerical method, time series

analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

It is reported that the infection of HIV weakens the immune
system of a human host and damages bodily systems such as
the heart, kidneys and brain, ultimately leading to death.
Unfortunately, there is currently no cure for this infectious
condition; nevertheless, there are efficient retroviral medica-
tions for improving patient health; yet, overuse of these drugs
can have dangerous side effects. According to research, HIV
infection is considered to be the most dangerous infection in
the world affecting different sectors. HIV affected 1.8 million
individuals in 2017, with 940 000 people dying from the
illness. We believe that we can put a stop to the AIDS epi-
demic. Between 2010 and 2019, there was a 23% decline in
new HIV infections worldwide. A larger number of people
are receiving treatment than ever before. It is noticed that
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people may have symptoms that are similar to a sore throat,
rash, headache, fever and influenza. Sometimes the symptoms
are serious such as diarrhoea, fever, cough, weight and
swollen lymph nodes. The infections develop serious condi-
tions if the treatment is not serious.

Nowadays, modeling of natural phenomena is becoming
a field of increased focus for researchers. Such models give
sufficient information about the different dynamics of infec-
tious diseases [1]. Rashid and Xiao [2, 3] studied the indi-
vidual’s loss of immunity due to which they move to the
susceptible class and they also evaluated the periodic trans-
mission of dengue and seasonality in vectors. In 1999 [4], the
authors introduced an HIV model and indicated the most
valuable control numerically. The authors in [5—7] developed
different models to study the dynamics and key factors like
viral mutation, intracellular delays, etc. The researchers in [8]
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incorporated two mechanisms such as infection by free vir-
ions and cell-to-cell direct transmission. The author in [9]
examined the interaction through a model that consists of four
different classes of population of HIV with CD4" T-cells.
Perilson and Nelson in [10] have uncovered some important
features with the help of a dynamical model by using a
parameter estimation method. Raun and Calshaw [11] ana-
lyzed the model already presented by Perilson and Nelson in
[10], and modified it into three different classes, where they
considered free-virus, infected and healthy CD4™" T-cells.
Samia et al [12] conducted research and studied the phe-
nomena of HIV-1 infection through fractional calculus.
Ghoreishi et al [13] examined the HIV model by homotopy
analysis method and also the researchers in [14-16] used a
wide variety of ideas and techniques to analyze the dynamics
of HIV. In [17], the chaotic phenomena of the dynamical
system of HIV infection have been interrogated and analyzed.

Fractional differentiations are widely used due to their
memory effect and they produce the best fit for the data of
infectious disease as compared to the classic differentiation
[18-21]. The fractional derivatives outperform due to inher-
ited properties and memory effect [22-25]. Moreover, due to
such features of fractional differentiation, these are used in
modeling the phenomena of complex problems in various
disciplines such as chemistry, physiology, technology,
sociology, physics etc [26-28]. Over the last decades, dif-
ferent definitions of fractional calculus have been utilized to
model and investigate the transmission phenomena of dif-
ferent infections. In the literature, mostly biological phe-
nomena are more precisely structured and modelled through
fractional derivatives [29, 30]. The transmission phenomena
of HIV have been conceptualized with preventive measures
through the theory of optimal control [31]. Furthermore, non-
integer derivative possesses extraordinary characteristics
which make it superior to integer derivatives. There are
numerous operators in the literature on fractional theory,
however, we choose Caputo and Atangana—Baleanu operators
for the analysis of our model. The Caputo fractional deriva-
tive has the benefit of allowing standard boundary and initial
value conditions to be incorporated in the problem formula-
tion while the Atangana—Baleanu represent natural phenom-
ena with nonlocal and non-singular. Therefore, we opt to
present the dynamics of HIV infection through fractional
calculus to understand the interaction of CD4" T-cells with
HIV-free viruses in the body of the host to highlight the major
aspects of the phenomena and to provide a good intervention
with the health departments for the control of HIV infection.

In the second section of this research work, we con-
structed the transmission dynamics of HIV infection to show
the interaction of CD4 " T-cells and HIV viruses with control
interventions. The hypothesized system of HIV infection is
then presented through Caputo and Atangana—Baleanu frac-
tional operators for more accurate outcomes. The basic results
and theories of the proposed fractional system are listed in
section three for the analysis of the HIV system. In section
four, a numerical technique is introduced to highlight the
solution pathways. The system’s most important parameter

has been identified in section five of the research work
through numerical simulations.

2. Formulation of HIV dynamics

In this section of the work, we structured the transmission
phenomena of HIV to visualise the interaction of healthy
T-cells, infected T-cells and HIV-free viruses which are
symbolized by T, I, and V, respectively. In the past, several
researchers formulated the dynamics of HIV and tested it to
study the complex phenomenon of HIV [32-34]. They looked
at numerous elements of HIV infections and discovered dis-
tinct input parameters for their models. The transmission
phenomena of HIV were formulated by the researcher in [15]
as follows

I T+ rT(l - T+I) kv,

dt max

d/

— =kVT — u,l,

a Hy

dv

NI — v, 1
Q@ Ky My (D

where s denotes the rate at which new T-cells are recruited
into the body and ur denotes the rate at which T-cells die
while gy and p; indicate the death rate of HIV viruses and
infected T-cells. The infection rate of healthy T-cells is
indicated by k and N is the reproduction number of cells by
infected T-cells. The Perelson and Nelson [35] HIV model
with saturation incidence is given as

d—T:rTl—T — /BVT,
dr I 4+ aV

Tmax
dr/ BvT
—=——ul
dd 14+ aV
dv
m = Ny, I — p, V. 2)

Here, we anticipated that healthy CD4" T-cells become
infected by infected T-cells and HIV viruses via a saturated
incidence rate. We also assumed variable term s exp(—kxV)
instead of a constant one. The word s exp(V) represent the
quantity of new healthy 7 lymphocytes generated via the
thymus as a function of viral load concentration. Then
according to [36], the system of HIV infection with variable
source terms is given by

dr T kVT
— =sexp(—kV) — u,; T+ rT|1 — —
dr p(=rV) = iy ( Tmax) 1+ aqV
T
1+ 0421,
d/ kVT alT
—= + =l
d 1+ oV 1+ apl
dv kvVT
== = Nyl = pyV - ———,
dt 14+ gV

3

in which « is the efficiency of a protease inhibitor and is the
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Table 1. Interpretation of input parameters and state-variables of the system with values.

Input factors  Descriptions Values

wr Death rate of healthy T-cells 0.02d"

N Production number of virus by I Assumed
Tnax Healthy T-cells maximum concentration 1500 mm >
k Infection rate of healthy T-cells by free virus 2.4 x 107°d™"
Iy Initial concentration of infected T-cells Assumed
Ly The rate at which viruses of HIV dies 24d7!

s Supply rate of T from precursors 0.1 mm~—

r Growth rate of healthy T-cells population 3d7"

To Initial concentration of healthy T-cells Assumed
0% The rate at which infected T-cells dies 03d!

Vo Concentration of HIV-free viruses Assumed

cellular infection rate, respectively. Antiviral treatment is
used to introduce three control measures. The aforemen-
tioned HIV infection dynamics with the control intervention
become as

(;—T =sexp(—kV) — upT + rT(l - L)
t

max
kVT olT
-l-cg)— A - c))—,

1+ qV I+ ol
dr kVT olT
—=1—-a)—+ 1A —c)—— — wl,
a ¢ ])1+qu ( 2)1+a21 Hi
av KVT
A = )N T — gV — (1 — ) — 4
5 ( 3) Ny, My ( l)1+a1V “

In the above model, we introduce the control measures c;(¢),
c,(?) and c3(7). The function c(¢), c,(¢) indicates the efficacy
of drug therapy in blocking the infection of new cells, and
the control indicates the efficacy of drug therapy in inhi-
biting the production of viruses, respectively. There is no
blockage if ¢;(#) =0 and the blockage is 100 % effective if
ci(=1.

3. Results of fractional theory

Here, we recalled some basic concepts of Caputo and Atan-
gana—Baleanu fractional operators for the analysis of HIV
infection model. Firstly, we introduce the results of the
Caputo operator which are given as follows:

Definition 1. Take f in a way that f: RT™ — R; then the
integral f in fractional Caputo form is as

o 1 ! -
GO = =— [ =y Fody
I'(a) Jo
in which I' is the Gamma function and « represents fractional
order.

Definition 2. Take f in a way that f € C", then the Caputo
fractional derivative is defined in the below manner

1 t fn(y)
I'n — a) L/:)

(l‘ o y)O.'JrI‘L*l Ys

DF(f®) =1"""D'f(t) =

in which n — 1 <a <n e N and °D® approached to f'(t) as
« approaches to one. Next, we represent the novel Atangana—
Baleanu fractional operator which show the dynamics of
natural phenomena with nonlocal and non-singular kernel. It
has been proved that the results of this novel derivative are
more accurate than the others. The definition of Atangana—
Baleanu operator is as follows:

Definition 3. Take f in a manner that f € H'(a, b), with
a € [0, 1] and b < b then the Atangana—Baleanu operator is

B@) [y [ =y
2. f(f)Ea[ a—]dy.

1 -«

a D f() =

Definition 4. For f, the fractional integral of Atangana—
Baleanu operator is as

ascpory = L= %y 4

! _ a—1
B fa f@ =y 'dy,

Q@
B(a)T'()

the original function is obtained as the fractional order
approaches zero.

Theorem 1. Assume f such that f € Cla, b], then the below
holds [37]:

[ N O[S IB fa; lF ol

where ||f (1)|] = max,<,;<plf (@)].

In addition to this, the Lipschitz condition for this ABC
derivative is satisfied [37]:

€D fi(6) =4"C DEL O < i) = O

4. Dynamics of HIV via Caputo derivative

Here, we will represent the new HIV infection model (4) in
the framework of the Caputo derivative and will introduce a
numerical technique for the Caputo operator to highlight the
dynamics of HIV. The new model (4) of HIV in the Caputo
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Figure 1. Graphical view analysis of the time series of the system (5) to conceptualize the dynamical behaviour of (a) healthy T-cells, (b)
infected T-cells and (c) HIV-free viruses with input factor o = 1.0.

framework is where D denotes Caputo fractional operator where the
initial condition is given as 7(0) = Ty, 1(0) = I and V(0) =V,
Cra T+1
oD/'T =sexp(=krV) — pu; T+ rT|1 — 4.1. Numerical scheme for Caputo system
max
— (1 = ekVT — (1 — )T, A numerical approach is presented for solving the fractional
g DT =(1 — e)kVT + (1 — ex)adT — I, HIY model in the Caputo sense (5.) is prese.n.ted in this sub-
Cra section. The current approach, which we utilise to solve the
oDV =0 — 3)Npd — oy V — kVT, (®)]

fractional Caputo nonlinear ordinary differential equation, is
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Figure 2. Graphical view analysis of the time series of the system (5) to conceptualize the dynamical behaviour of (a) healthy T-cells, (b)
infected T-cells and (c) HIV-free viruses with input factor v = 0.8.

described in [37]. The below steps are followed to obtain the

scheme
6D 2(0) = f (1, 2(1). (6)
Applying the fundamental theorem, we have the following and
z(t) — z(0) = ;ft FOGz00) @ — x> 1d (7)
T(a) Jo X <X X X

here, we take the time t=¢,,;, n=0, 1, ..., and get

1 Tnti
Z(tyy1) — 2(0) = @j; (tar1 — D7 (1, z(0)dt, (8)

_ _ 1 fn _ a—1
) = 20) = 5 fo ty — 00V (e z@)d. (9)
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Figure 3. Graphical view analysis of the time series of the system (5) to conceptualize the dynamical behaviour of (a) healthy T-cells, (b)
infected T-cells and (c) HIV-free viruses with input factor oo = 0.6.

Equations (9) and (8) imply that in which

1

1 It

_ fn1 ae = — el — DO, dt, 11
z(tn+1)—z(tn)+mj; (tas1 — D (2, 2(0)dr 1= Ty Jy G DTGz D
A
| . ' and
-t fo (tn — 10 (2, 2()dr
8] I
10 - — e .
Y (10) 2= o fo (ty — DI, 2(6))dr (12)
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Figure 4. Representation of the dynamical behaviour of the system (5) to visualize the concentration of (a) healthy T-cells, (b) infected T-cells

and (c) HIV-free viruses with different values of the control variable ¢y, i.e. ¢; =0.25, 0.30, 0.35.

Then f(¢, z(f)) is approximated in the below manner

PO~ )+ Lz
n — tn—1 tnfl - tn
_ (@, 20) _ - 1, 2a—1) .
= —h (t —t,_1) —h (t — ).

(13)

We get the following after simplification

— f(tn’ Zn) fn+1

Ao (tas1 — DN — t,1)dt

hl'(a) Jo
_ M Tyt

_ a1
hF(a) (tn+1 1) (t tn)dt-

(14)
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Figure 5. Representation of the dynamical behaviour of the system (5) to visualize the concentration of (a) healthy T-cells, (b) infected T-cells
and (c) HIV-free viruses with different values of the control variable c3, i.e. c3 =0.3, 0.4, 0.5.

Further, we have In the same way
A, = L 2| 20 . i 1 I— il f G z)
, () | o n+t a4+ 1 a2 = @j(‘) (tn — 1) I:T(t — 1)
f(tn—l’ Zn—l)[ h o 1 a+1] f(tnflv anl) ]
— e et = —— |- 15 — 2 (t — t,) |dt. 16
@ o™ a+1™! (13) h =& (16)
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Figure 6. Effect of the input factor r on the concentration of (a) healthy T-cells, (b) infected T-cells and (c) HIV-free viruses of the system (5)
of HIV infection.

Further simplifying, we get following approximate solution
2ht® a+l a+1
_ Sz b ot ) = 2t + L @ | 2Ry b R e
o2 W@ |a" a+1 hl'(«) a a+1l « a+1
f(tn—l’ Zn—l) 1 a+1 + 4‘)“(1‘”71’ anl) _ﬁta + t"ajj»ll + t’;hq
T 1t,, . a7 HT () S I R

Putting equations (16) and (17) into (10), we obtained the We represent the transmission phenomena of system (5) of



Commun. Theor. Phys. 74 (2022) 105001

R Jan et al

HIV through this numerical scheme. The parameter values
presented in table 1 are utilized for numerical purposes.

5. Dynamics of HIV via ABC derivative

Here, we will represent the new HIV infection model (4)
through the fractional derivative of Atangana—Baleanu. Then
we will introduce a numerical technique for ABC derivative to
visualize the contribution of several factors to the system of
HIV. First, we represent our model (4) through Atangana—
Baleanu derivative as

max

, T+1
0ECDAT = sexp(—rV) — T + rT(l it )

— (1 = c)kVT — (1 — )T,
SEEDAT = (1 — e)kVT + (1 — c2)alT — 1,

SECDYV = (1 — ;)N I — py V — kVT, (19)
where (2D indicates ABC fractional derivative and the

initial condition is 7(0) = Ty, 1(0) = I, and V(0) =V,,.

5.1. lterative scheme with simulations

Here, we present a numerical approach for doing various
simulations to demonstrate the influence of input parameters
on the system’s output. We begin by rewriting our HIV
infection system in integral form using the fundamental the-
orem of fractional calculus as

ABCDOz (1) = C(t, z(1)),

the following is obtained through mathematical skills

1-o «
—z(0 - —
z(® 0= ABC(«a )C( 2®) + ABC(a) x I'(«)
x i €& 2 — e
(20)
Now, at time t=1t.,, [=0, 1, 2, ...,, the following is
obtained
) — 200) = €t 2(1)) + a

ABC(a) x I'(a)
x ftH C(&, z(©)) (kg1 — &S,
0

1-¢ «
ABC(§)C( o 2() + ABC(a) x [()

3 M 06 2O - o
j=0"1

ABC(a)

2L

Here, we apply the interpolation polynomial on the function
C(&, z(&)) on the interval [#;, t;,;] and get the estimated value
as

) - C(tj 1» Z(tj 1))( t])

C(& 2(9) = Cj, 2(t) —————
(22)

putting in (21), we have

z(0) +

USHES C(t/, z(m) +

[0
ABC () ABC(a) x I(a)

1
s Z(tj)) fjy1
,Zg(—h )

B C(tj—1, 2(tj—1)
h fj

(t — ti )ty — D de
= - t)”'dt).
(23)

After calculating the above, we get the following

z(ty) +

C(lk

z(4) = e(t) +

1 - «
ABC () ABC (o)

L hee, 2()
Xzﬂ T +2)

j=0

— k=D —j+2+2a)

-~ h“C(tJ-,l, Z(l‘j,]
I'(a + 2)

—(@ =ik —j+1+ )

(k+1 =Dtk —j+2+ o)

) ((k+ 1 = ot

(24)

We get the below-mentioned approximate solution of the
proposed HIV infection model

1 - o'
T (tr 1) = T:(10) + ABC(a )Cl(tk’ z() + ABC(o)
heC(tj, (1)) . .
———((k+ 1 — )%k — 2
;% Taty &Tl1-DE—jt+2+a)
—k=pik—j+2+2a)
G- 2(t-0) el
et ((k+1-j)
k=Pt —j+1+ )|
1
L () = L(20) + mcl(lka z(t) + ABC( )
hacl(t/a Z(t/)) . .
B S (41— otk — i+ 2
;% Taig EH1-pk-jt+2+a)
—k—)NY%*k —j+ 2+ 2a)
G 2(t-0) el
T et ((k+1—j)
—k=pihk—j+1+ Oé))],
1 —
Vot 1) = Vo (t0) + ABC(a )Cl(fk z() + ABC( )
heCy(tj, (1)) . .
————((k+ 1 — )%k — 2
,Z% Tt 2 (k+1 =Nk —j+2+a
— k=N —j+ 2+ 20)
WG, 2(t-0) ot
T 12 ((k+1-j)

—k=Ntk—j+1+a)|
(25

This numerical scheme is used to find out the solution to the
ABC fractional system. We will utilize this scheme to
investigate the transmission phenomena of the fractional
system (19) of HIV infection.



Commun. Theor. Phys. 74 (2022) 105001 R Jan et al
250 T T T T T T T T T 400 T T T T T T T T T
s=05 s=05
s=1.0 s=1.0
=15 350
200
300
P P
[} =
=150 =
3 8 2501
= =
z 3
= 0 200
g 100 2
I £
150 |
50 [ \
100 1
0 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time in days Time in days
(a) (b)
7 X104 T T T T T T T T T
s=05
s=1.0
6 s=15
>
0w S
9
9
241 -
(9]
2
S
> 3
I
9
2y
1 L -
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 8 90 100
Time in days
(c)

Figure 7. Effect of the input factor s on the concentration of (a) healthy T-cells, (b) infected T-cells and (c) HIV-free viruses of the system (5)

of HIV infection.

6. Numerical results

Despite the tremendous worldwide efforts to combat HIV/
AIDS, HIV/AIDS continues to be a significant burden for
afflicted households in APR. This burden is exacerbated by
decreased work income, higher healthcare spending, and a
loss of capital to cover the income-to-expenditure gap. Hence,
it is valuable to investigate the main factors of HIV infection

for the control of these losses. The key purpose of this phase
of the research is to visualise the system’s time series and
chaotic behaviour in order to grasp the influence of various
aspects on the system. To explore how the input factors
impact the HIV dynamics, we employ a range of numerical
scenarios.

The system’s oscillatory behaviour has been depicted in
the first scenario in figures 1-3 with various fractional order
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Figure 8. Illustration of the dynamics of HIV infection to show the chaotic phenomena of (a) healthy T-cells, infected T-cells and HIV-free
viruses, (b) health T-cells versus infected T-cells, (c) infected T-cells versus HIV-free viruses and (d) HIV-free viruses versus healthy T-cells

with « =0.9, r=2.8 and s = 1.0.

values. The fractional parameter has been found to have a
significant influence on the system’s solution routes. The
order of the fractional derivative has been discovered to have
a favourable impact on HIV dynamics and might be utilized
as a preventive measure. We exhibited the variance in control
measures c¢; and c;3 in the second scenario shown in figures 4—
5, while the impact of input parameters r and s were high-
lighted in figures 6 and 7, respectively. In the last scenario

12

presented in figures 8 and 9, the chaotic phenomena of the
system of HIV are obtained through fractional parameters.
We displayed the chaotic behaviours of the system using
various values of a. A comparative analysis of both the
operators is presented numerically in figure 10 to illustrate the
effect of these operators on the system. It has been noticed
from these figures that the system exhibits a strong chaotic
phenomenon and that the chaos may be controlled using these
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Figure 9. Graphical view analysis of the dynamics of HIV infection to show the chaotic phenomena of (a) healthy T-cells, infected T-cells
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healthy T-cells with o« = 0.7, r=2.8 and s = 1.0.

input parameters. Because of the nonlinearity of the suggested
system, the oscillatory and chaotic nature of the system are
inextricably intertwined. It has been revealed that this input
parameter has a substantial impact on the system and that
reducing the fractional order can lessen the number of HIV
infections; as a result, policymakers are advised to use this
parameter.

13

The theory of chaos is concerned with nonlinear phe-
nomena that are difficult to anticipate or regulate. This
phenomenon is primarily concerned with the deterministic
principles and underlying patterns of the dynamical systems,
which are extremely sensitive to initial values of state vari-
ables and were previously assumed to have wholly random
states of chaos and irregularity. These circumstances are
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operators for competitive analysis.

crucial because they reveal a lot about the system of HIV
infection. Small perturbations can cause massive changes in
the system, as seen by the chaotic behaviour of the system.
These chaotic plots reflect the system’s instability and indi-
cate how sensitive the system is to beginning circumstances,
making it unpredictable. Our findings revealed that the sys-
tem’s nonlinearity causes substantial oscillation and chaos,
and that these behaviours are intimately coupled to one
another.

7. Conclusion

HIV infection is known to attack the immune system and
destroy T-cells, lowering the body’s ability to fight against
other infections. It is currently a major public health concern
across the world. Although new data shows that HIV infec-
tion is on the decline, additional research is needed to fully
comprehend how HIV interacts with T-cells. Here, we
structured the dynamics of HIV in order to analyse the
transmission route of HIV infection. In our model, we ima-
gined the interaction of HIV viruses, uninfected T-cells, and
infected T-cells. The suggested system of HIV is then pre-
sented via Caputo and Atangana—Baleanu fractional opera-
tors. A numerical approach is presented and utilized to
highlight the solution paths and chaotic behaviour of HIV
infection. Various simulations have been carried out in order
to depict the system’s most crucial situation. We have shown
how the suggested system behaves in a chaotic manner. The
effect of fractional-order on the HIV infection system’s
solution routes has been demonstrated. The transmission

process of HIV was highlighted by varying various input
parameters for infection management and prevention. We
discovered that chaotic and oscillatory behaviour are very
closely connected. We will examine our HIV infection model
in the future to see how medicine influences the virus’s path
and come up with better cure plans. We will improve the
model by incorporating delay into the system to show how
delay influences HIV dynamics. The model will also be
updated to incorporate vaccines and medications to show the
impact of vaccination and treatment on the system.
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