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Abstract

CrossMark

We discuss a new gravitational effect that the wave packet of a free-fall quantum particle

undergoes a spin-dependent transverse shift in Earth’s gravitational field. This effect is similar to
the geometric spin Hall effect (GSHE) (Aiello 2009 et al Phys. Rev. Lett. 103 100401 ), and can
be called gravity-induced GSHE. This effect suggests that the free-fall wave packets of opposite
spin-polarized quantum particles can be split in the direction perpendicular to spin and gravity.
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1. Introduction

The universality of free fall (UFF) is tested as a weak form of the
Einstein equivalence principle, which is the most important guide
when establishing Einstein’s general relativity. The classical tests
of UFF with macroscopic masses have achieved a high precision
quantified by the Eotvos parameter 7 of about 10" [1, 2], and
no violations were observed so far. To extend the domain of the
test body, verifications of UFF based on microscopic particles in
the quantum regime have been studied theoretically and experi-
mentally since 1960s [3]. Recently, WEP-test experiments using
atom interferometers were proposed to reach the level of n ~
107"° [4, 5]. Quantum systems are advantageous in testing WEP
with regard to fundamental properties such as charge [6], matter/
anti-matter [7-9], spin [10-12] and internal structures. Possible
violations of equivalence principle were discussed extensively,
such as by spin-gravity coupling [13-16], by spin—torsion cou-
pling [17-19], in extended or modified theories of gravity, and in
almost all tentative theories to unify general relativity and the
standard model of particle physics [20, 21].

Theoretical investigations have offered a wide variety of
approaches to the WEP in the quantum domain [22-30]. How-
ever, quantum particles differ critically from classical point-like
particles in many respects, because of their wave-like features and
inherent spacial extension. Even the notion of WEP for quantum
systems is not very clear and it may be different from the con-
ventional WEP for classical systems [31-38]. In this paper,
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considering wave-like features and inherent spacial extension of
quantum particles, we reveal an interesting phenomenon that the
space-averaged free-fall point of quantum particles allows a spin-
dependent transverse split in the gravitational field. Since such an
effect is similar to the geometric spin Hall effect (GSHE) dis-
cussed in [39, 40], we call it gravity-induced GSHE.

For a light beam, the GSHE states that a spin-dependent
transverse displacement of the light intensity centroid is
observed in a plane tilted with respect to the propagation
direction. Unlike the conventional spin Hall effect of light as
a result of light-matter interaction [41-43], the GSHE of light
is of purely geometric nature. Besides, it is distinct from the
Relativistic Hall effect [44] and the Wigner translation of
electromagnetic beams [45] both as an effect of Lorentz-
boost-induced sideways shift of the energy-flux and energy-
density centrioids. Analogously, the gravity-induced GSHE
reported here also differs from the so-called gravitational Hall
effect presented in the literature [46—49] which describes a
helicity-dependent geodesic deviation correction.

In this paper, we discuss the gravity-induced GSHE for
spin-polarized Dirac particle beams. The paper is organized as
follows. First, we derive an approximate wave-packet solu-
tion of the covariant Dirac equation in the Newtonian limit.
With this solution, we demonstrate the gravity-induced GSHE
of freely-falling Dirac particles. Next, we present an alter-
native derivation of the gravity-induced GSHE in a simple
method without employing detailed knowledge of the
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Figure 1. A schematic set-up to display gravity-induced GSHE.
Dirac particles carrying spin and initial momentum along z axis are
released to fall freely and hit a detection plane x’-y’ tilted by an angle

0 with respect to the horizontal plane. The detection and beam
frames are denoted by K’ and K, respectively. Just as an example, the
spin orientation marked here is along the positive direction of z axis
and o = 1/2.

wave-function of the Dirac particle beam. Then, we go further
to discuss another interesting configuration displaying grav-
ity-induced GSHE. Finally, we give our conclusions.

2. Gravity-induced GSHE

We consider a simple system of the Dirac particle originally
carrying spin and momentum /%, along the vertical direction
(z-axis) and falling freely from a height & towards a tilted
detection plane [see figure 1]. The particle’s space-averaged point
of free fall will be shifted along the y axis by an amount
6~ (A, /4m)o tan6 compared to its classical counterpart’s.
Here 0 = £1/2 is the initial spin polarization of the particle
along the positive or negative direction of z-axis, and A the de
Broglie wavelength of the particle when it hitting the detector,
with A~ 2n/2 [p where p ~ 7k, + m,|2gh . Moreover, if g
— 0, the ordinary GSHE of Dirac particles is recovered. The
displacement 6 is an order of magnitude smaller than A . This
effect implies that Dirac or quantum particles with dlfferent spin
orientations follow ‘different paths’.

2.1. Heuiristic result from GSHE

To calculate the space-averaged free-fall point of the Dirac
particle, what we need to know is the spatial distribution of
the particle beam’s intensity in the detection plane. Following
the method of Aiello et al [39], we choose the energy flux of
the particle beam to represent its intensity and so consider the
energy—momentum (E-M) tensor TH#" of the particle beam.
Thus, the space-averaged free-fall point of the particle can be
calculated as the barycenter of the energy flux 77%° across the

tilted detection plane:
.= fy’ 7’70 dx’dy’/f T'%0 dx'dy’. )]

Note that the energy flux 7720 is defined in the detection frame
and not in the beam frame.

Before going into the detailed calculation, we first
explain a heuristic way of understanding the gravity-induced
GSHE, by making a close connection to the ordinary GSHE,
which originates from a non-zero spin projection in the
detection plane and has no relevance to gravity. To deal with
the gravitational interactions, we follow [50-52] and adopt
two reasonable approximations. First, the spin-precession
effect can be safely neglected in our case from the result of
gravity probe B (GP-B) [53] experiment. Second, the motion
of the particle wave-packet’s center can be approximately
replaced by its classical trajectory. With these two approx-
imations, the gravity-induced GSHE can be converted to a
GSHE: gravity just induces a kinematic configuration that the
particle can hit the detector with non-zero spin projection in
the detection plane, and then the ordinary GSHE occurs.
Considering the particles as set up in figure 1, we can directly
quote the expression for ordinary GSHE as derived in [39],
and write down our result for the gravity-induced GSHE:

(), = icr tan 6. )

™
Here A\ =27/ /p is the de Broglie wavelength with the
momentum p, when the particle arriving at the detection
plane. For a non-relat1v1stlc particle and in the Newton’s
gravitation limit, we have P~ fk, + m /2ghg. Strictly

speaking, equation (2) is only the leading order effect. Since
this effect is pretty small, throughout this paper we omit the
discussion of high-order corrections such as from the angular
spread of the beam.

2.2. Deriving Gravity-induced GSHE with wave-function

To convince the reader that our heuristic argument gives the
correct result, we now make an explicit calculation of the parti-
cle’s motion in the gravitational field. The dynamics of the par-
ticle in a gravitational field should be described by the covariate
Dirac equation in a curved spacetime [54] (A = ¢ = 1):

(iv*Dy — m) = 0. 3)
Here v%(a = 0,...,3) is the flat Dirac matrix, defined by
74 = ¢,'y" in the local tetrad frame. Hereafter the latin indices
denote flat indices and the greek indices curved indices. The
tetrad field can be defined by g, = e, e’ 7,5» and we adopt the
flat metric 7, = diag(+-, —, —, —). D, is the covariant derivative
for the spinor field:

ab
D = e"DM, D = 8ﬂ - 2 Sab,
where S, = i[v,, Y5]/4 and w ;‘b = —w ;’“ is the spin connection
which also can be expressed as
ab \bT Vv
w =e, “e N — e @LeA,

in terms of the affine connection I';, and the tetrad field.
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Throughout this paper, we choose the Dirac representation of
gamma matrices:

6:10) i_(0 o) ._
ol (0 ) ¥ ol 0,] 1,2, 3.

Hereafter, hatted specific indices denote flat indices and ¢” is the
Pauli matrices.

We consider Earth’s gravitational field near it’s surface in
the Newtonian limit, which is described by the metric (see,

e.g. [47, 55-57])
ds? = A2()dt?> —dr -dr, AR) =1+¢( (= —gz. 4

Here we choose the gravitational acceleration g along the
positive direction of z-axis, and the physical domain is limited
by the scales L, = ¢?/g. This metric describes approximately
the gravitational field in a small region on Earth’s surface and
50 |gz/c?| = |z/L,| < 1 is necessary.

With the metric, the tetrads and their inverse are

A Al

1 1

Using the zero-torsion condition [58] or constructing the affine
connection by the so-called Christoffel symbol Ff;l, =
(985 + 008y, — 058,,) /2 from the metric, one can derive

the non-zero components of the spin connection w j”:
30 _ r_
wWo —wo =A = —g

Here the prime represents differentiation with respect to z. The
covariant derivatives are thus written in explicit forms as

D; = eiLDu =D; =0,
7973/2).
Now equation (3) can be changed into [59, 60]

Dy=el'D, = A Dy =A10, + A

(70A~19, + i/ 0; + %yﬁAflA’ — m) = 0. (5)
It can be further rewritten in a Schrodinger-like form

. . s VA

10,9 = A(—ia/ 0 — 15043 + PBm) = Hy, (6)

where o = fyéfyf and § = fy(). The Hamiltonian H also can be
written in an explicitly Hermitian form with the free-spacetime
Hamiltonian Hy = —ia/0; + fm:
1 1
H= E(AHO + HoA) = E{HO’ A} 7

We turn now to the calculation of energy flux density. For
the Dirac field, the familiar symmetric E-M tensor’ [61] is

i—
Ty = Z7l) (vaDb + 7Da)y + hec. (8)
Here + h. c. indicates the addition of the Hermitian conjugate of

3 1t should be noted that the E~M tensors have various versions, e.g. the
canonical one and symmetric one. It may be tricky to pick out a proper one in
actual application. Fortunately, the use of different E-M tensors does not
change qualitatively the key features of the GSHE.

the terms  Recalling that D; =0; and

Dy = A1, + A aé/ 2), we can get the energy flux density

foregoing

. . 1 —
T = elte Ty = =P (70D + 7 D)y + he.

1 A
=— i 9 — —al, — =a + h. 9
4A1w( A 2Aaa)¢ ¢« O

To eliminate the time derivative in equation (9) by using
equation (6), we obtain
@Y1 + ieud W),

- 1o
T = — ([0 (10)

where Yf = —i&‘[jkafoaf/4.
As is known, the formal solution of equation (6) is given
by

Px, 1) = e My, (1)

as the initial wave function ), is known. For instance, con-
sider a gaussian packet of half width d [62]:

x2+y2
0= e@W5t ex) =Ne 2 ek, (12)
where A is a normalization constant. It describes an particle
of spin up or down with the expectation value of the initial
momentum (p), = 7k, along z axis for Wi, = {1, 0,0, 0} T
or Wj=1{0,1,0,0}T in the non-relativistic limit
(d ~ 1/k, > 1/m). Expanding the exponential operation in
equation (11) to first order for small g, the approximation of

the wave function (x, 1) is as follows

2 R
x, 1) ~ (1 — iCHot — %az + %ta3)eiH°’wo. (13)

For the detailed calculations of the above results, see the
Appendix. Using the non-relativistic limit d ~ 1/k, > 1/m,
we have

(—iHot)*1ho = (0% + 05 + 07 — mH)t™hy

—(kg +m)Ppy =~ (14)
With equation (14) in hand, it is possible to conveniently
express the part of exponential operator in equation (13) in the
form

ﬂHotd, Z —lHot)n
( w2t2)k (_w2t2)k‘
~ - H,
kzo[ (2k)! 2k + 1)! Ot]%
:[cos(wt) - Sl“(“”)iHot] bo. (15)

Applying equations (13)—(15) and the non-relativistic limit
w~m>k,~ 1/dand neglectmg the high-order terms of g,
we can obtaln the wave functions 1,// (x, 1) and 7,/) (x, 1) of spin-
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up and spin-down particles, respectively

(1 + imgtz — gtk /2)e "
0
Pl =~ gte*i’”’/Z + igrzk, cos(mr) wx), (16)
—gtz(x + iy)cos(m;)/dz
0
, | @ imgrz — igt?k, /2)e Mt
P2~ —gtz(x — iy)cos(mt) /d? ). (17)
_gte*imz/Z — igizk  cos(mr)

Plugging equations (16) and (17) into the energy flux density
(10) and computing the first-order approximation with respect
to g, we finally obtain

T, 1) = —%(1 + g2l (18)
T, 1) = [(1 + g2k, + mgt]|pl, (19)

where o = £ 1/2 for spin-up and -down particles. Returning
to equation (1), we now should notice the connection between
the beam and detector frames (K and K’ frames). These two
frames are connected by x'¢ = A% (x” — €”), with the con-
stant vector ¢4 = (0, 0, 0, hg) and the transformation matrix

1 0 0 O
a |0 cosf O sinf
o o 1 o

0 —sinf O cosf

Now we use the map 77 (x") = A% A%, T (A 'x’ + €), and
then have T/, y,0,1) = TP cosh, y', x'sin O+
h,, t)cos — T*0(x' cos 0, y', x'sinf + h , 1)sinf on the
detection plane z’ = 0 in K’ frame. Thus, with equations (18)
and (19) the resulting expression for the energy flux density is
given by

(20)

Ty = ([1 + g(x'sin@ + h )1k, + mgt)|p(x")? cos

!
+ %[1 + g sind + h )l sin6, 1)

where [ (x")[> = N'? Exp[—(x'?cos?6 + y'?)/d?]. Finally,
inserting equation (21) into equation (1) and restoring explicit
factors & and c leads to
0y, = /10 tan 0
Y 2k, + mgt /(1 + gh [c)]
/0 tan 0 P
~—— = ‘otané.
2(/k,+ mgt)y 4Anm

(22)

Here ghg/c2 < landsoA =2n7% /p with p = 7k, + mgt.
Notice that when the particles hit the detector 2, = g*/2 and
p = fk, + mgt = fk, + m /2ghg in the weak-field
approximation. We therefore show the previous result of
equation (2) and confirm the heuristic interpretation.

A few parenthetical remarks are in order. First, this effect
is purely the result of matter-wave effect of quantum particle
because it would be vanished as 7 — 0. However, even in flat
spacetime g — 0, it just gives rise to the ordinary GSHE of
the particle and of course does not completely disappear.

Second, although this effect originates from the wave feature
of quantum particle, the split is not due to the geodesic
deviation out of the inherent spacial extension of wave,
because the above derivation is acted in a uniform gravita-
tional field and the tidal effect does not exist. Thus, this effect
differs radically from the gravitational Hall effect [46—49] out
of a helicity-dependent geodesic deviation correction and as
an genuine gravitational effect.

2.3. Deriving Gravity-induced GSHE without wave-function

The simple spin-dependent result of equation (22) obtained by
a lengthy calculation is not accidental. In fact, assuming the
wave-function with cylindrical symmetry, we can derive the
previous result by a clever method without more detailed
knowledge of the particle wave-function. From equation (21),
equation (1) can be re-expressed by

f V[T (x)cos O — T*0(x)sin §]dx'dy’

), =
f [T0(x)cos 6 — T*0(x)sin O] dx’dy’

f YITO(x)cos @ — T*0(x)sin O] dxdy
= (23)

- f [T20(x)cos 6 — T*0(x)sin O]dxdy

In the last step, expressing the area element from K’ frame to
K frame does not change the main result. It might be more
convenient to deduce the previous result again in K frame.

One use of the symmetric E-M tensor is to construct a
conserved angular momentum tensor:

M/\;uz — qu)\z/ _ x”T)‘“. (24)

In K frame, 7*° can be ignored compared to 7<° because the
beam mainly carries energy along the propagation direction.
Thus, the T term can be ignored for a small tilted angle 6 in
the denominator of equation (23), and the remaining 7°° term
can be computed via the sum rule of energy:

[0 dxdy = KF = e, (25)
where n is the particle number per unit time across the plane
x-y, namely the particle number flux. Thus, IC? denotes the
energy per unit time across the plane x-y. Notice that the
particle’s energy e, = (m* + pf)l/ 2 ~ m in the non-relati-
vistic limit. Due to the axial syrﬁmetry of the beam around its
beam axis (z-axis), T% should be even function of x and y.
Thus, the integral of yT%°cosf would vanish and only the
integral of yT**sinf was left in the numerator of
equation (23). Again, due to the axial symmetry of the beam,
we have an angular momentum sum rule as follows

TyO _ TxO
[ oraxdy = [araxay = [ !

1

== f MO2xdy = %Nafi. (26)

Here N is the particle number per unit length along the
direction of propagation and we have n =v N = Np /e,
where v_ is the particle speed when hitting the detector.
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Substituting equations (25) and (26) into equation (23),
we can verify again that the barycenter of a spin-polarized
beam’s energy flux

_ No/i sinf) _ 2 tand,

=— (27
2negcosl 4w

¥,
We can offer a simple explanation of equation (27). For
equation (1), the denominator is related to the component of
the particle’s energy flux or momentum normal to the
detection plane, i.e. the longitudinal energy flux or momen-
tum p cos #; the numerator corresponds to the projection of
the particle’s spin in the detection plane, i.e. the transverse
spin angular momentum o/ sin §. Hence, we get immediately
the result (y) o< (A, /27)o tan 6. This means that the particles
display spin-dependent pattern in the tilted detection plane
and their barycenter of the free-fall point changes with their
spin orientations. Additionally, in comparison with the clas-
sical particle, the quantum particle with spin polarization is
able to fall freely in a different ‘path structure’.

2.4. Another configuration of Gravity-induced GSHE

There is another possible configuration of gravity-induced
GSHE. Figure 2 depicts the configuration that the particles
with horizontal spin polarization as well as momentum along
the longitudinal direction are released into free fall. Interest-
ingly, the detection plane x’-y’ in K’ frame is not tilted with
respect to the x’-y’ plane in K frame in this configuration.
Indeed, the ‘geometric’ factor here originates from the con-
figuration of transverse spin polarization that the spin orien-
tation is initially perpendicular to the momentum. Repeating
the above analysis and computation, we can get the result of
the gravity-induced GSHE for figure 2:
A
o), = 28— Z

= —to, 28
2n5g 4 (28)

Here A ~ 27rﬁ/pg with p o~ lk, + m /2ghg again and
o = £ 1/2 is the initial spin polarization of the particle along
the positive or negative direction of x-axis. This effect sug-
gests that the free-fall wave packets of opposite spin-polarized
quantum particles can be split in the direction perpendicular
to spin and gravity. More interestingly, unlike the GSHE of
light reported previously and the configuration we discuss
above, the gravity-induced GSHE in such configuration can
be observed in a non-tilted beam-detector system.

Although the gravity-induced GSHE presented here is
tiny, it could be detectable. May be the ultra-cold neutron
beam and the neutron detector of high-resolution are suitable
for the measurements of this effect. For instance, for an ultra-
cold neutron beam with a neutron kinetic-energy of 41 neV or
a neutron velocity of 1.0 m s~ ', its de Broglie wavelength is
400 nm [63]. If it is released with hg = 4 cm, the final
velocity v, ~ 1.3 m/s and Ag ~ 300 nm. In such case, we
could rudely estimate the scale of the shift (y), ~ 12 nm,
which is possible tested by a neutron detector of high spatial
resolution about 10 nm [64].

K x

y g
2

I a—
/ . /"

Figure 2. A sketch of particles initially carrying spin along the
horizontal direction (x-axis) and momentum along the longitudinal
direction (z-axis), and falling freely to a horizontal detection plane
x’-y’. Just as an example, the spin orientation marked here is along
the positive direction of x axis and o = 1/2.

3. Discussion and summary

In conclusion, we revealed a nontrivial phenomenon called
gravity-induced GSHE containing simultaneously quantum
and gravitational effects. Though we considered an ideal
metric describing a uniform gravitational field in a sufficiently
small region, it does recover the Newtonian limit with
neglecting terms of order (gz/c*)? or higher. Such a new
effect suggests that the ‘free-fall points’ of quantum particles
(or matter waves) vary with their spin polarization. In com-
parison, the atom in the tests of UFF using atomic inter-
ferometers is also quantum matter, but treated as a classical
point particle in the interaction with the gravitational field and
only as matter wave in the interaction with the probing light
pulse. Such special treatment is valid when the de Broglie
wave-length of the atom is sufficiently small. This effect can
be mainly interpreted as the result of the matter-wave effect of
quantum particles in a gravitational field, seen from the fol-
lowing two respects: One can predict the ordinary GSHE of
quatum particles or matter waves in the absence of gravita-
tional field (g — 0); and it is treated as an effect of quantum
mechanics because it would vanish as i — 0.

The measurement of this effect will be of great interest and
importance. As mentioned above, the displacement is an order of
magnitude smaller than the de Broglie wavelength. Thus, this
effect is extremely small for the spatial resolution of conven-
tional detectors, considering the common particle beams such as
electron, neutron and atom beams. However, the effect would
perhaps be observed if the particle is extremely slow and the
detector realizes a higher spatial resolution. To test the gravity-
induced GSHE might be as a new probe of UFF of quantum
particles, so as to clarify the notion of quantum WEP.
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Appendix : first-order approximation of exponential
operator

For simplicity, we put B = iHyt, C = {(, B}/2 and { = —gz,
then iHt = B + C. Let us consider the expansion:
. 1
e =% —(-B—-C)"~e B +F.

(AD)
n=0 n!

It is rather complicated to expand the exponential function of
two noncommutative operators B and C [65]. However, to the
first order in g, we can arrive at

F= ZZ C pnokcpit,

amtim1 1!

Noting [B?, ozé] =0, {B, aé} =2t0, and C = (B — gtaé/Z

with [B, (] = — gtag, we can derive
F= (- - 2. + Lades, (A2)
2 2
and
e~ (1 — (B — 4o, + Eades. (A3)
2 2
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