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Abstract
Dimensionality is a central concept in developing the theory of low-dimensional physics.
However, previous research on dimensional crossover in the context of a Bose–Einstein
condensate (BEC) has focused on the single-component BEC. To our best knowledge, further
consideration of the two-component internal degrees of freedom on the effects of dimensional
crossover is still lacking. In this work, we are motivated to investigate the dimensional crossover
in a three-dimensional (3D) Rabi-coupled two-component BEC. The spin degrees of freedom
consist of the Rabi-like and inter- and intra- interaction coupling constants. The dimensional
crossovers from 3D to 2D or 1D are controlled by the continuous increase of 1D or 2D lattice
depth respectively. Then we analyze how the dimensionality of the model system combined with
spin degrees of freedom can affect quantum fluctuations. Accordingly, the analytical expressions
of the ground-state energy and quantum depletion of the system are obtained. Our results show
that the dimensional crossover induces a characteristic 3D to quasi-2D or 1D crossover in the
behavior of quantum fluctuations, with an emphasis on the separated effects of Rabi-like and
inter- and intra- interaction coupling constants on the quantum fluctuations. Conditions for
possible experimental realization of our scenario are also discussed.

Keywords: two-component Bose gas, dimensional crossover, Bogoliubov theroy, quantum
fluctuation, optical lattice

1. Introduction

Dimensionality is a fundamental aspect of quantum many-body
physics. In particular, investigating quantum fluctuations along
the crossovers from three dimensions (3D) to quasi-2D or 1D can
set up the bridge between the theoretical low-D models and the
actually 3D physics world. For instance, Tomonaga–Luttinger
liquid [1] exists in 1D, while the high-Tc superconductivity [2]
and magic-angle graphene [3–5] occur in 2D; these exotic phe-
nomena at various low dimensions have stimulated ongoing
interests and efforts to explore how the dimensionality affects
quantum many-body systems using Bose–Einstein condensates

(BEC). With state-of-the-art technology, quasi-1D [6] and quasi-
2D [7, 8] BECs can be realized by controlling the depth of
optical lattices. Along this research line, numerous tight-con-
finement schemes [9–17] have been proposed where BECs can
undergo dimensional crossovers directly from 3D to 2D or 1D (
i.e. 3D-2D or 3D-1D crossover).

These prior works have focused on single-component
BECs, where the low-lying excitation is just the density
excitation. To our best knowledge, however, a further account
of the spin degrees of freedom (d.o.f.), a key ingredient
playing out in modern physics, is still lacking in the study of
dimensional crossovers. Compared to the single-component
case, quantum gases with spin d.o.f can display novel phe-
nomenology through the emergence of both the density and
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spin-density excitations. Therefore, we anticipate the spin d.o.
f. greatly enriches dimensional-crossover physics.

Here, we theoretically investigate the dimensional cross-
overs in a Rabi-coupled two-component BEC. Such systems
have attracted great attention recently [18, 19], since they not
only allow for extending the well-known Rabi problem of atom
optics to the interacting systems, it turns out that the population
transfer between the two levels can be described by Josephson
dynamics, leading to internal Josephson effects.

In a Rabi-coupled two-component BEC, compared to the
one-component case, the additional spin d.o.f introduces two
new aspects. The first is associated with the existence of inter-
and intra-spin interactions, whose interplay can significantly
influence quantum fluctuations. In particular, [20] has predicted
that a mixture of repulsive quantum gases in 3D with finely-
tuned mutual attraction may lead to the self-bound states sta-
bilized by quantum fluctuations, known as the quantum droplet
[20–22]. In low dimensions, where quantum fluctuations are
enhanced, the quantum droplet states exhibit properties distinct
from the 3D case at equilibrium [23] and near equilibrium [24].
The second aspect is associated with the Rabi coupling
between the two internal levels, which makes the relative phase
excitations gapped. Very recently, [19] has experimentally
measured the beyond-mean-field equation of state in a coher-
ently coupled two-component BEC. Thus, it is interesting and
desired to study the dimensional crossovers based on the Rabi
coupled two-component BEC.

Specifically, we study the quantum fluctuation of an
optically trapped Rabi-coupled two-component BEC along
the dimensional crossover. Using the Green function
approach and the Bogoliubov approximation, we calculate the
ground-state energy and the quantum depletion. Our results
show that the lattice induces a characteristic 3D to quasi-2D
or quasi-1D crossover in the behavior of ground-state energy.
We analyze how the combined effects of spin d.o.f and
dimensionality affect the quantum fluctuation.

The paper is structured as follows. In section 2, we intro-
duce our general theoretical model, based on which we study
the dimensional crossover from 3D to quasi-low-dimensional
cases in the following two sections. In section 3, we first study a
3D BEC trapped in a 1D optical lattice and investigate the
dimensional crossover behavior from 3D to quasi-2D by
increasing the lattice depth. Then, we study 3D BEC trapped in
a 2D optical lattice, and investigate the dimensional crossover
from 3D to quasi-1D in the ground state energy and quantum
depletion. We conclude with a summary in section 4.

2. Hamiltonian of an optically trapped two-
component BEC

We consider a Rabi-coupled two-component BEC in 3D, with
two internal states labelled by σ= a, b, which is trapped in a
d-dimensional (d= 1 or 2) optical lattice. At zero temper-
ature, the system can be well described by the N-body

Hamiltonian [22, 19, 18, 25]
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Here Ysˆ ( )r is the annihilation Bose-field operator, m is the

mass, μ is the chemical potential, and ò= Y Y +ˆ [ ˆ ( ) ( )†
r r rN d a a

Y Yˆ ( ) ( )]†
r rb b is the number operator. In the second line,

Π= ÿΩσx/2 is the single-particle Hamiltonian written in
terms of Pauli matrices. In the third line, p=ss ss¢ ¢g a m4 2

denote the intra-atomic (gaa= gbb= g) and inter-atomic (gab)
coupling constants, respectively, with the scattering length
ss¢a . In equation (1), the lattice potential takes the form
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Here x1= x (x2= y) denotes the space coordinate. The lattice
strength Vopt is in units of the recoil energy of = E q m2R B

2 2 ,
with qB the Bragg momentum and lB= π/qB the lattice period.

We assume Vopt are relatively large (Vopt� 5), so that the
size of the interband gap Egap is larger than the chemical
potential μ, i.e. Egap? μ. Meanwhile, we assume the overlap
of the wave functions of two consecutive wells is still suffi-
cient to ensure full coherence. By this assumption [9–12], we
restrict ourselves to the lowest Bloch band, where the physics
is governed by the ratio between the chemical potential μ and
the bandwidth of 4dJ, with J the tunneling rates between
neighboring wells. In general, for 4dJ? μ, the system retains
an anisotropic 3D behavior, whereas for 4dJ; μ, the system
crossovers to the (3−d) dimension. In the limit of 4dJ= μ,
the model system can be treated as (3−d)-dimensional.

Following [9–12], we treat our system within the tight-
binding approximation. Restricting ourselves only to the
lowest Bloch band in the trapped direction, we write the
wavefunction in terms of the Wannier functions as
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opt . We note that
further account of the beyond-lowest-Bloch-band transverse
modes goes beyond the scope of this work.
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with V the system volume. Compared to the Hamiltonian [19]
of a Rabi-coupled two-component BEC without optical con-
finement, Hamiltonian (3) in the presence of d-dimensional
optical lattice acquires two important differences: (i) the
interaction coupling constants have been renormalized
by the optical lattice as =g̃ C gd and =g̃ C gab

d
ab with

p x= ( )C q2 B . This is because the tight optical lattice
effectively increases the repulsive interactions. (ii) Instead of
taking the quadratic form as in the free space, the kinetic
energy ek

0 along the confinement direction becomes
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Following [19], we treat Hamiltonian (3) within the fra-
mework of Bogoliubov approximation. This consists of
separating the dominant contribution from the condensates

(i.e. ==a nk a0
0 and = f

=b n ek b0
0 i ) from the other modes

(i.e. ¹âk 0 and ¹b̂k 0). At the zeroth order, we obtain the
mean-field energy = + + +[( ) ( ) ]E g n n g n na b ab a bMF

1

2
0 2 0 2 0 0

f mW - +( )n n n ncosa b a b
0 0 0 0 . The mean-field energy EMF

can be minimized for f= π. Depending on the interplay
between intra- and inter-spin interactions, the ground state is
different. When gab< g+ 2ÿΩ/n0, the ground state is a
neutral ground sate described by = =n n n 2a b

0 0
0 . When

gab> g+ 2ÿΩ/n0, the ground state is polarized,
with - = - W -( ( ) )n n n g g n1 2a b ab

0 0
0 0

2 .
We are interested in the neutral ground state with

= =n n n 2a b
0 0

0 . The transition from the spin-unpolarized to
the spin-polarized phases, which occurs at a critical interac-
tion constant = + W˜ ˜ g g n2ab 0, is beyond the scope of the
current work. Applying the Bogoliubov theory [9–12, 15, 19]
to equation (3) under the stated conditions, we obtain an
effective Hamiltonian
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with m = + - W( ˜ ˜ ) g g n 2 2ab and n the total density. Our
subsequent studies of dimensional crossover will be based on
Hamiltonian (6).

We aim to derive the beyond-mean-field ground state
energy Eg and the quantum depletion (N− N0)/N of an
optically-trapped Bose gas. To this end, we exploit the
approach developed by Hugenholtz and Pines [26]. Using the

single-particle Green function [27], we have
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In equations (7) and (8), G(k, ω) is the Fourier transform of
the Green function - ¢ = - á ¢ ñ( ) ˆ ( ) ˆ ( )†kG t t Ta t a t, i k k in the
time domain, with T denoting the chronological product.
Following the standard procedures [26, 28], we obtain
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Equations (7) and (8) provide the central equations for our
subsequent study of the dimensional crossover of the opti-
cally-trapped Rabi-coupled two-component Bose gas.

3. Dimensional crossovers of an optically-trapped
Rabi-coupled two-component BEC

According to equations (7) and (8), the spin d.o.f. introduces two
new ingredients compared to the scalar BEC. Namely, the
beyond-mean-field ground state energy Eg and the quantum
depletion (N−N0)/N now depend on, firstly, the g̃ and g̃ab
associated with the spin-dependent interactions, and secondly,
the Rabi-frequency ÿΩ. In particular, the Rabi-coupling ∝ÿΩ
between the two components gives rise to phase correlations
between the two components, in contrast to the density-density
correlations coming from the interspecies interaction g̃. Note that
such coupling can be implemented via a two-photon (Raman)
process or direct coupling between the two internal states.

To identify the respective roles of the spin-dependent inter-
action and the Rabi coupling on the dimensional crossover, we
devise two scenarios. In scenario (i), we take =˜ ˜g gab and investi-
gate how the Rabi-coupling affects the dimensional crossover. In
scenario (ii), we turn off the Rabi coupling, i.e. ÿΩ= 0, and study
how the dimensional crossover is affected by the spin-dependent
interaction quantified by l=˜ ˜g gab with λ≠ 1.

We shall first consider a 1D optical lattice along the x-
direction and study the dimensional crossover from 3D to
quasi-2D in section 3.1. Then, we consider a 2D optical lattice

3
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along both x- and y- directions and study the dimensional
crossover from 3D to quasi-1D in section 3.2.

3.1. Dimensional crossover from 3D to quasi-2D

In this section, we study a Rabi-coupled two-component Bose
gas in a 1D optical lattice = ´( ) ( )V x V E q xsinR Bopt opt

2 in the
x-direction; atoms are unconfined in the y−z plane. In this
case, the single-particle energy in equation (9) can be written
as e = - + +[ ( )] ( )J k l k k m2 1 cos 2k x B y z

0 2 2 2 .
We begin with scenario (i), where =˜ ˜g gab and ÿΩ≠ 0.

To explicitly construct an analytic solution, we exploit the
fact that typical experimental mixtures of hyperfine states of
bosonic alkali atoms are near the boundary of phase separa-
tion instability, namely the coupling constants satisfy the
inequality -˜ ˜ ˜g g gab in order to avoid the phase separa-
tion. For the two hyperfine states of Na, for example, one has
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be simplified as
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It turns out that the Rabi term ÿΩ does not explicitly
enter the expressions of quantum depletions and beyond-
mean-field ground state energy. Such surprising results can be
understood as follows. Mathematically, the ÿΩ only appears
in the second term of the Green function (12). It can be shown
that the corresponding integrals in equations (13) and (14)
yield the zero value, i.e. ò w w e- - W + =( ) d i0 0

C k
0

where C denotes the contour of integration. As a result, ÿΩ
disappears in equations (13) and (14). From the physical
angle, the second term of equation (12) shows that the energy

level e e= + W( ) k k2
0 acts only as the transition state such

as âk to ˆ†
bk and there are no particles really occupying this

spectrum. Therefore, the second term of equation (12) does
not contribute to equations (13) and (14).

Next, we turn to scenario (ii) where ÿΩ= 0 and show
how the spin-dependent interactions, i.e. l=˜ ˜g gab with
λ≠ 1, can affect the dimensional crossover. In this case, the
Green function (9) becomes

w
w e

w e

w e

w e

=
+ +

- +

+
+ +

- +

+

-

( )
( ) ( )

( ) ( )
( )

˜ ˜

˜ ˜









k
k

k

G
n

n

,
1

2 i0

1

2 i0
. 17

k

k

g g

g g

0
2

2
1
2

0
2

2
2
2

ab

ab

Obviously, both the two terms in equation (17) contribute to
the quantum fluctuations, different from scenario (i) where
only the first term of equation (12) contributes. The quantum
depletions n1ex= n2ex and the beyond-mean-field energy
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Now, we are ready to study the quantum fluctuations

along the dimensional crossover. In the asymptotic limit
˜ s s, 11,2 , equations (13), (14), (18), and (19) recover the

well-known results in 3D [29]. Specifically, the quantum
depletions in equations (13) or (18) asymptotically approach

p
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
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6
3 2
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3 2 with the effective mass =* m Jl2 B
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in the 3D limit where » -- - -s s sarctan 3
1
2

1
2

3
2 . Similarly, in
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equations (14) and (19), we find pG( ) s s32 15 , so that
the asymptotic beyond-mean-field ground state energy is

= +
p

* ( ˜ )/
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E V E gng
D m

m

m3
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8

15
5 2

3 2
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3 2

2 3 , respectively. In

the limit s= 1, on the other hand, the function Δ(s) in
equation (15) saturates to the value of π/2 and equation (13)
asymptotically approaches

p
˜


mgn

l8 B
2 which is the known result

for the 2D quantum depletion.
To visualize the behavior of quantum fluctuations in the

entire crossover regimes, we focus on equations (18) and (19),
as ÿΩ does not explicitly play a role as stated previously. In
figure 1(a), we show the scaling function γ(s) and its
asymptotic behavior with λ= 0.95. In the limit s? 1, the
asymptotic law is g l p+( ) ( ) ( )s s32 1 152 . in
figure 1(b) we show the scaling function δ(s) and its
asymptotic behavior with λ= 0.95. For vanishing s, δ(s)
saturates to π, no matter what the value of λ is. In the limit
s? 1, the asymptotic law is d l+( ) ( ) ( )s s2 1 3 .

Note that we do not consider the effect of the confine-
ment-induced resonance (CIR) [30, 31] on the coupling
constant g̃. This is because the basic physics of CIR can be
understood in the language of Feshbach resonance [32],
where the scattering open channel and closed channels are,
respectively, represented by the ground-state transverse mode
and the other transverse modes along the tight-confinement
dimensions. Within the tight-binding approximation, how-
ever, the ultracold atoms are frozen in the states of the lowest
Bloch band and can not be excited into the other transverse
modes. Thus the effect of CIR on g̃ can be safely ignored due
to the absence of closed channels [30–32].

3.2. Dimensional crossover from 3D to quasi-1D

In this section, we study the dimensional crossover from
3D to quasi-1D of a Rabi-coupled two-component Bose
gas trapped into a 2D optical lattice as =( )rVopt

+[ ( ) ( )]V E q x q ysin sinR B Bopt
2 2 . In this case, the dispersion

relation of the single particle becomes e = +
k

k

m
0

2
z

2 2

- -[ ]J k k2 2 cos cosx y .
Previously, we have stated that the Rabi-coupling con-

stant of ÿΩ does not enter the analytical expressions of
quantum depletion and beyond-mean-field ground state
energy. We found that this statement still hold in the case of
the dimensional crossover from 3D to 1D. As such, we only
consider scenario (ii) where l=˜ ˜g gab and Ω= 0. We find
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Now, we study the dimensional crossover from 3D
toward 1D based on equations (20) and (21). In the limit of
s? 1, we find equations (20) and (21) recover the well-
known 3D results [29], namely the system retains an aniso-
tropic 3D behavior. Specifically, for s? 1, the asymptotic
law is p-( ) [ ( )]F s s s1.43 16 2 15 in equation (23)
and p( ) ( )H s s4 3 2 in equation (22). It follows from
equations (20) and (21) that we asymptotically obtain

Figure 1. (a) Scaling function γ(s) (solid line) in equation (19) and its
asymptotic behavior (dashed line) of g l p+( ) ( ) ( )s s32 1 152

in the limit of s? 1 with λ= 0.95. (b) Scaling function δ(s) (solid
line) in equation (18) and its asymptotic behavior (dashed line) of
d l+( ) ( ) ( )s s2 1 3 with λ= 0.95. For vanishing s, δ(s)
saturates to the value π, no matter what the value of λ is.
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In the opposite limit s= 1, p( ) ( )H s s4 3 2 in
equation (22) is divergent like -( ) ( )H s sln 2.7 2 , so the
quantum depletion in equation (20) diverges. It implies that in
the absence of tunneling, no real Bose–Einstein condensation
exists, which agrees with the general theorems in one
dimension. Meanwhile, the F(s) in equation (23) saturates to
the value 4 2 3. In this limit, we can neglect the Bloch
dispersion and equation (21) approaches asymptotically to the
ground state energy of a 1D Bose gas as =/E Vg

D1

- +
p

+ -⎡
⎣

⎤
⎦( ) ( )˜ ˜ ˜ ˜

E m n n
g g

D
g g

DMF
2

3 2 1
3 2

2 1
3 2

ab ab with the

effective 1D density of =n nlD B1
2.

In figure 2, we plot the functions h(s) in equation (20) and
f (s) in equation (21). Their asymptotic behaviors are also
shown. Thus we conclude that equations (20) and (21) provide
the analytical expressions of quantum depletion and beyond-
mean-field ground state along the 3D-1D dimensional crossover.

4. Discussion and conclusion

The calculations of this work are based on the mean-field
Bogoliubov theory, which can be justified as a posteriori by
estimating the quantum depletion [9]. Note that there is no
experimental study of quantum depletion of Rabi-coupled
two-component BEC. In what follows, we plan to adopt the
experimental parameters of one-component BEC to estimate
the quantum depletion in equations (13) and (20). In more
detail, the experimental work [33, 34] has shown that the
Bogoliubov theory provides a semiquantitative description for
an optically-trapped one-component BEC even in the case of
the quantum depletions being in excess of 50%. It is supposed
that such a statement is still valid for an optically-trapped
Rabi-coupled two-component. We limit ourselves into the
case of p= = =˜ ˜ g g g a m4ab D

2
3 in order to simplifying

the estimation. For a uniform BEC, the quantum depletion

is - =( )/ /N N N na8 3 D0 3
2 and the Bogoliubov approx-

imation is valid provided na D3
2 is small. For an optically-

trapped Rabi-coupled two-component BEC in the regime
= =˜ ˜g g gab , the above quantum depletion is modified qua-

litatively as p*( ) ˜/ /m m na8 3 D3 with m* the effective mass.
Considering typical experimental parameters as in [9], this
modification remains small. For an optically-trapped Rabi-
coupled two-component Bose gas along the dimensional
crossovers, we take the parameters in the experiment in [35]:
n= 3× 1013 cm−3, lB= 430 nm, a3D= 5.4 nm, and lB/ξ∼ 1.
The corresponding quantum depletion is evaluated as
(N− N0)/N∼ 0.0036× δ(s) or h(s) with δ(s) and h(s) shown
in figures 1(b) and 2(b) respectively. It is clear that the
quantum depletion (N− N0)/N< 20%, and therefore, the
Bogoliubov approximation is valid in the sprit of [33, 34].

Summarizing, we have investigated a 3D Rabi-coupled
two-component BEC trapped in a 1D and 2D optical lattice,
respectively. We have analytically derived the ground-state
energy and the quantum depletion. Our results show the 3D to
quasi-2D or quasi-1D crossovers in the behavior of quantum
fluctuations. The underlying physics involves the interplay of
three quantities: the strength of the optical lattice, the interac-
tion between bosonic atoms, and the spin d.o.f. All these
quantities are experimentally controllable at present. Notably,
the state-of-the-art technology allows the depth of an optical
lattice to be arbitrarily tuned by changing the laser intensities,
enabling realizations of quasi-1D [6] and quasi-2D [7, 8]
BECs. [36] has demonstrated fast control of the interatomic
interactions by coherently coupling two atomic states with
intra- and interstate scattering lengths almost at will. Further-
more, the beyond-mean-field equation of the state of a Rabi-
coupled two-component has been experimentally measured by
[19]. Therefore, the phenomena discussed in this paper are
supposed to be observable within the current experimental
capabilities. Directly observing such dimensional effects on the
novel quantum phases in a Rabi-coupled two-component BEC,
e.g. quantum droplet [20, 23], would present an important step
in revealing the interplay between dimensionality, quantum
fluctuations and spin d.o.f in quasi-low dimensions.
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