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Abstract
We obtained a new class of solutions for a relativistic anisotropic compact star by utilizing the
Karmarkar embedding condition. To obtain the closed-form solution a suitable form of one of
the gravitational potentials has been chosen to determine the other by analyzing the Karmarkar
condition. The resulting solutions are found to be well-behaved and regular and could describe a
compact stellar object. Considering the current estimated values of the mass and radius of the
pulsar 4U1820− 30 as input parameters, all the physically relevant parameters are shown to be
well-behaved to a very good degree of accuracy.

Supplementary material for this article is available online
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1. Introduction

Scientists have been amazed by the relativistic compact objects
over the last few decades. Towards the end of their lifetime, stars
having an initial mass larger than Chandrasekhar’s limit collapse
to form compact objects. When gravity overpowers the pressure
due to neutron degeneracy, the situation leads to the formation of
neutron stars. On the other hand, in white dwarf stars, the effect
of gravity is balanced by the pressure due to electron degeneracy.
In the year 1916, for the first time, Schwarzschild [1] obtained the
exact solution of static spherically symmetric compact objects in
hydro-static equilibrium which has the vacuum exterior gravita-
tional field. After that, many researchers continuously investi-
gated the exact solution of compact stellar objects. The nature of
the matter composition and distributions of the star decides its
interior geometry and hence the structure as a whole. The interior
geometry and nature of the compact stellar configuration can be

known by assuming a particular suitable metric potential and
solving the Einstein field equations. But finding a suitable metric
potential that satisfies all the regularity condition is an extremely
difficult job. For the modelling of the realistic compact stellar
object, the search for the exact solution of the Einstein field
equations has been an intense area of relativistic astrophysics.

Usually, for the study of compact stellar structure in the
general relativity context, the isotropic nature of the matter
distribution has been considered, i.e. people have considered
the perfect fluid which has equal tangential (pt) and radial
(pr) pressures. But in reality, the anisotropy in the interior of
the stellar structure can arise because of many reasons. In a
compact object, whenever the pressures in the radial and
tangential directions are not the same they produce aniso-
tropy. Since the paper by Bowers and Liang [2], in the
context of general relativity, there has been ample research
in the study of the role of anisotropy in a relativistic star. The
geometry of spacetime inside the star matches the
Schwarzschild geometry outside the star. The extremely
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dense matter inside the compact star is relativistic. When the
density becomes of the order of 1015gm− cm−3, local
anisotropy may arise inside the star [3]. Kippenhahn and
Weigert [4] indicated that anisotropy can be introduced by
the existence of a type 3A superfluid or by the presence of a
solid stellar core. Anisotropy can also be possible because of
the different kinds of phase transitions (Sokolov [5]) or pion
condensation (Sawyer [6]). In the framework of a relativistic
anisotropic fluid, Herrera and Santos [7] investigated the
influences of slow rotation in stars, and Letelier [8] studied
the mixture of two gases, such as ionized hydrogen and
electrons. Weber [9] illustrated that strong magnetic fields
act as a means for generating anisotropy in pressure inside a
compact and spherical object. For a typical polytropic index,
Thirukkanesh and Ragel [10] determined exact solutions to
Einstein’s field equations for a spherically symmetric dis-
tribution of anisotropic matter. Researchers [11–13]
explored various aspects of polytropic EOS in the studies of
a static perfect fluid sphere. Thirukkanesh and Ragel [14]
have employed modified Van der Waals EOS to characterise
charged fluid spheres having anisotropic pressure. Worm-
holes [15] and gravastars [16, 17] are also considered ani-
sotropic. Recently, the effect of tidal deformation has also
been studied by considering the anisotropic matter dis-
tributions [18–20]. Gedela et al [21] presented a core-
envelope model of an anisotropic star. A three-layered
model of a compact star was reported by [22]. Therefore, it
is important to study the nature of the space-time of aniso-
tropic fluid spheres under the general theory of relativity.

The necessary and sufficient condition to embed a
4-dimensional spherically symmetric space in a 5-dimensional
space was proposed by Karamakar [23]. This condition can be
expressed as a simple equation of the components of the
Riemannian curvature tensor. Many researchers used this
condition for general relativistic studies of compact stars [22,
24–28]. Some researchers [24, 25, 27, 29–32] modelled ani-
sotropic stars using Karmakar’s condition. Using this nice
condition, the charged anisotropic star was modelled by
[33–35]. Deb et al [36] proposed a new model of a compact
star under f (T) gravity in which they utilized this condition to
find out one of the metric potentials. Recently, Pant et al
[26, 37] used the technique of gravitational decoupling in their
model for the charged compact star. They have considered an
embedding class I type spacetime. Inspired by some earlier
research investigations, in this present paper, we explore static
anisotropic fluid solutions of Einstein Field equations in the
framework of Karmarkar’s condition that could describe
observationally compatible compact stellar objects. In part-
icular, we explore the well-known pulsar 4U1820− 30. To
construct the model, we have assumed a specific type of metric
potential grr. This particular form of the metric potential was
obtained by Das et al [38] in developing a compact stellar
model under a specific anisotropic profile. Then using the
famous Karmakar’s embedding class—I condition and the
form of metric grr, we calculated the expression for gtt. All
the physical parameters are well-behaved and regular inside
the anisotropic star which implies a realistic description of
astrophysical compact objects.

In the present paper, we use that metric to develop
models of the dense compact star under the well-known
Karmakar condition. More specifically, we are interested in
whether this particular geometry can generate the static stellar
model of compact objects and it is found that under the
Karmakar condition, it is possible to obtain the stellar model.
Another interesting point of this model is that under certain
conditions between model parameters (α, β, R), the assumed
metric potential reduces to the well-known Tolman metric.
The assumed metric potential which reduces to the Tolman
solution with suitable fixation of model parameters represents
a compact stellar structure.

This paper is organised as follows. We discuss the
Einstein field equations with pressure anisotropy for the
compact object in section 2. In section 3, we derive the form
of the grr with the help of the Karmarkar condition. In
section 4, we present the new solution. Requirements for a
physical solution are described in section 5. The interior
solution is matched with the exterior Schwarzschild line
element in section 6. Physical analysis of our solution and its
compatibility with the observed pulsar are presented in
sections 7 and 8. In section 10, the stability of the new model
of the compact star is analysed. We conclude with a discus-
sion of the results in section 11.

2. Einstein’s equation

Assuming spherical symmetry for the relativistic superdense
star, we consider the metric of the following form to describe
the geometry inside it with coordinates (t, r, θ. f).

( ) ( )( ) ( )s t r rd e d e d d sin d . 1r r2 2 2 2 2 2 2q q f= - + + +n l

Here the gravitational potentials, ν(r) and λ(r), are indepen-
dent of the time coordinate.

We assume that the star is made up of anisotropic matter.
The energy-momentum tensor consistent with the matter
distribution inside the star is as follows:

( ) ( ) ( )T p u u p g p p . 2ij i j t ij r t i jr x x= + + + -

Here ρ represents the energy density. pr and pt are the radial
and tangential fluid pressures respectively. ui represents the
4-velocity of the fluid and ξ i is a unit space-like 4-vector
along the radial direction such that the following conditions
are satisfied u iui=− 1, ξ iξj=− 1 and u iξj= 0.

The Einstein field equations corresponding to spacetime
metric (13) with G= c= 1 written as

( ) ( )
r r

8
1

1 e e , 3
2

pr
l

= - +
¢l l- -

( ) ( )p
r r

8
1

1 e e , 4r 2
p

n
= - - +

¢l l- -

( )p
r r

8
e

4
2

2 2
, 5t

2p n n n l
n l

=  + ¢ - ¢ ¢ +
¢
-

l-
⎛
⎝

⎞
⎠

where a prime (’) denotes differentiation with respect to r. The
anisotropic pressure which is the difference of pressures along
transverse and radial directions is given by (using 4 and 5)
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The mass contained within radius r of the spherically sym-
metric distribution of matter is

( ) ˜ ˜ ( )m r r r
1

2
d . 7

r

0

2ò r=

3. Karmarkar condition

In general, a 4-dimensional space can be embedded in a 10-
dimensional flat space. Eisenhart showed that a 4-dimensional
spherically symmetric space is immersible in a 6-dimensional
flat space. Therefore, it is embedded in class II space. Kar-
makar put forward a condition that is necessary and sufficient
to embed a 4-dimensional spherically symmetric space in a
5-dimensional space, thereby making it of class I. In terms of
the components of the Riemann curvature tensor, the condi-
tion can be expressed as follows:

( )R R R R R R , 81414 2323 1212 3434 1224 1334= +

Now, the components of the Riemann curvature tensor for the
line element (13) are:

( )

( )

R

R r

R
r

R r

R R
R

R R

e
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When all the values of equation (9) are substituted in
equation (8), the Karmakar condition reduces to the following
form:

( )2 e

e 1
. 10

n
n

n
l

¢
+ ¢ =

¢
-

l

l

It has been pointed out that the above equation (10) is the
necessary and sufficient condition for the embedding of class-
I when expressed in terms of the curvature components. It is
interesting to note that the solution obtained by Pandey and
Sharma [39] is not class-I type even though it satisfies the
Karmarkar condition.

Integrating equation (10), we get a more simple form of
the condition.

( )Fe 1 e , 112n= + ¢l n

where F is an arbitrary constant. The Karmarkar condition
furnishes a relation between the two metric potentials.

The generating function λ(r) thus provides us with a
solution to the system as shown in the following section.

4. Generating a new solution

Das et al [38] have developed a new class of compact stellar
models by choosing a particular metric potential grr and
anisotropy thereby generating the gtt metric solution. Our aim
is to develop a realistic model of the compact star. To achieve
this end, we assume the metric potential gtt of the form

( )( )
R r

e . 12r
2 2

2a
b=

-
+n ⎛

⎝
⎞
⎠

The assumed metric potential is finite, continuous, and well-
defined inside the star. Now it may be noted that under certain
assumptions this metric potential reduces to the well-known
Tolman metric [40]. The assumed metric potential can be
written as

( )( )
R

r

R
e 1 . 13r

2

2

2

1 2
a

b= - +n
-
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⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

Now if we assume 1r

R
 , the above expression can be

written as

( )( )
R

r

R

r

R
e 1 ..... . 14r

2

2

2

4

4

2
a

b= + + + +n
⎜ ⎟
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⎛
⎝
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⎠
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Expanding and keeping the higher-order terms of r

R
up to the

order of 4 we have

( )

( )
R R

r
R R R

r

R
e

2 2 2
.

15

r
2

4 2
2 2

2

6 4

2

4

4

4

a ab
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⎛
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Now if we set

R R

2
1,

2

4 2
2a ab

b+ + =

we have the relation

( )R
1

. 162 a
b

=
-

Now using (16) the expression for eν(r) (equation (15)) turns
out as

( ) ( )( ) r
e 1 1 . 17r

2
2

2

a
b= + -n ⎡

⎣⎢
⎤
⎦⎥

Since R is large as compared to r from equation (16) we have

( )
1

1, 18
a
b-


i.e.,

( )1
1. 19

b
a
- 

Basically, relations (18) and (19) are the same. In those
inequalities, R is the curvature parameter describing the
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geometry of the configuration having a dimension of length.
The numerical value of R is in general much larger than the
radii of pulsars which is evident from the value obtained from
matching conditions [38]. Hence, the square of it i.e., R2 is
considered much larger than 1 in equation (18) and
equation (19). So, equation (17) can be expanded as

( ) ( ) ( )( ) r r
e 1

2
1 1 .... . 20r

2
2

4

2
4

a
b

a
b= + - + - +n ⎡

⎣⎢
⎤
⎦⎥

Neglecting higher order terms, we have finally

[ ] ( )( ) Ar Bre 1 , 21r 2 4= + +n

where ( )A 12 2b= -
a

and ( )B 1 4

2= b
a
- .

Here, A and B are constant parameters having dimen-
sions L−2 and L−4 respectively. Equation (21) is the
renowned Tolman metric that is widely used in the modeling
of compact stars. The assumed metric potential, eν reduces
to a well-known Tolman metric under certain conditions. In
the expression of eν in equation (15) we can see that if we
set

R R

2
1

2

4 2
2a ab

b+ + =

which is actually

R
1

.2 a
b

=
-

In equation (16), the metric takes a particular form. This
particular relationship between the model parameters α, β,
and R of equation (16) in this fashion helps one to reduce the
assumed metric equation (13) to the Tolman metric. To have
a Tolman-like metric one can restrict model parameters to
obey equation (16). With the help of Karmarkar’s condition
(11) for generating embedded class I solution, we get the
following solution for the metric potential, λ(r):

( )
( )( ) F r

R r
e 1

16
. 22r

2 2

2 2 4

a
= +

-
l

From equations (3), (4), (5), (6) and (7) we get the following
physical quantities

( ( ) ( ))
( ( ) )

( )F Fr r R r R

Fr r R

16 16 5 3

16
, 23

2 2 2 2 2 3 2 2

2 2 2 2 4 2
r

a a
a

=
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Fr r R r R

4 4 4

16
, 24r

2 2 2 2 2 3

2 2 2 2 4 2 2

a a ab
a b a

=
- - + -
+ - - -

( )
( ( ) ) ( ( ) )

[( )( ( ) )
( )( )] ( )

p
r R

Fr r R r R

r R F r R

F r R r R

4

16

4

4 3 , 25

t

2 2 3

2 2 2 2 4 2 2 2

2 2 2 2 2 3

2 2 2 2

a
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a
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=
-

+ - - -
´ + - - -
+ - +

( )

( )

m r
Fr

Fr r r R r R r R R

8

16 4 6 4
.

27

2 3

2 2 8 6 2 4 4 2 6 8

a
a

=
+ - + - +

5. Necessary physical conditions for the solution

A feasible stellar solution of the Einstein field equations
should obey the conditions listed as follows:

(i) The gravitational potentials and the matter variables
should be well-defined at the center and singularity free
throughout the star.

(ii) Inside the star, the energy density ρ should be positive and its
gradient should be negative, i.e., ρ� 0 and 0

r

d

d
r .

(iii) Inside the star, the radial pressure pr and the tangential
pressure pt must be positive and their gradients should be
negative, i.e., pr� 0, pt� 0, 0

p

r

d

d
r < , 0

p

r

d

d
t < .

(iv) The radian pressure must be zero at the boundary of the
star, i.e., at r= b. However, the tangential pressure pt
may not vanish at r= b. The anisotropy must be zero at
the center i.e., Δ(r= 0)= 0.

(v) Inside the anisotropic star, the Null Energy Condition
and Strong Energy Condition of general relativity must
be satisfied. This implies the following conditions:
ρ+ pr� 0; ρ+ pt� 0; ρ+ pr+ 2pt� 0.

(vi) Inside the anisotropic star, the speed of sound must be
subluminal, i.e., 0 1

pd

d
r 
r

, 0 1
pd

d
t 
r

. Here we have

assumed the speed of light, c = 1.

(vii) The metric potentials of the space-time inside the star
should smoothly match the external space-time, i.e., the
Schwarzschild space-time metric at r = b where b
defines the radius of the star.

( ( )) ( ( ) )
[ ( )

(
( ))] ( )

r r R r R R r R F r R

r r r R r R R F

r r R R F

FR r R F

1

4 6 4 4

8 3 3 4

3 8

8 3 8 , 26

8 6 2 4 4 8 2 6 2 2 2 2

2 6 4 2 2 4 6 2

6 4 2 6 2

2 2 4

a a b
a a

a
ab ab

D = -
- + + - - - + -

´ - + - +
´ - - +

+ + -
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6. Matching with exterior space-time

We have considered a static spherically symmetric compact
star. Hence the nature of the exterior spacetime may be
described by the Schwarzschild line element

( ) ( )

s
M

r
t

M

r
r

r

d 1
2

d 1
2

d

d sin d . 28

2 2
1

2

2 2 2 2q q f

=- - + -

+ +

-
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

On matching the interior and the exterior spacetime
metric at the boundary of the star r= b, we get,

( )
R b

M

b
1

2
, 29

2 2

2a
b

-
+ = -⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )
( )F b

R b

M

b
1

16
1

2
, 30

2 2

2 2 4

1a
+

-
= -

-
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

at boundary, pressure should be zero, pr(r= b)= 0,

( ( ) ( ) )
( ( ) )( ( ) )

( )F F b R b R

Fb b R b R

4 4 4

16
0. 31

2 2 2 2 2 3

2 2 2 2 4 2 2

a a ab
a b a

- - + -
+ - - -

=

Using these boundary conditions, one can calculate the
unknown constants in terms of mass and radius of the star as

( )
( )

( )M b R

b b M2 2
, 32

2 2 2

5
a =

-

-

( )
( )b b M MR

b b M

2 3

2 2
, 33

3 2 2

5
b =

- -

-

( )F
b

M2
. 34

3
=

7. Physical analysis

1. From equations (12) and (22), we note that at r= 0,

( )( )e constant
R

0 2
2 b= + =n a , eλ(0)= 1. Thus, the gravita-

tional potentials are finite at the center of the star. We further
note that, ( ) ( )( ) ( )e e 0r

r
r

r0 0¢ = ¢ =n l
= = . Therefore, the

metric potentials are well-behaved everywhere inside the star.
Physical features of the metric potentials are shown graphi-
cally in figure 1.

2. The expressions for the central density and central
pressures are as follows:

( )

( ) ( )
( )

( ) ( )
( )

F

R

p
R F FR

R R

p
R F FR

R R

0
48

,

0
4 4 4

,

0
4 4 4

.

r

t

2

8

6 2 2

8 2

6 2 2

8 2

r
a

a a ab
a b

a a ab
a b

=

=
- -

+

=
- -

+

Since ρ(0)> 0 we have F> 0. Moreover,
pr(0)= pt(0)> 0 gives restriction on the model parameters

R
R

F4
.2

6
a b

a
+ <

3. The gradient of energy density, radial pressure and
tangential pressure are respectively obtained as

( ( ) )
[ ( )

( ) ( )] ( )
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F r F r r R R

r R r R
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Figure 1. Matching of the metric eν(r) and eλ(r) with the Schwarzs-
child exterior metric at the boundary.

Figure 2. Density and pressure gradients within the star.

5

Commun. Theor. Phys. 75 (2023) 025403 B K Parida et al



( )
( ( ) ) ( ( ))

[ ( ) ( ) ( )
( ) ( )

( )(( ) ( ) ( )
( ) (

) ) ( )
( ( ) ( )

( ) ) )]
( )

p

r

r r R

Fr r R R r

r R r R F r R

r r R R F r r R R

r R r R r R F r R

r r R R F r r R

R F r R

r R r R

F r r R R

d

d

8

16

3 8

8 9 7 128

2 2 4

8 11 64 5 3

2 16

3 2

8 3 2 ,

37

t
2 2 2

2 2 2 2 4 2 2 2 2

2 2 7 2 2 2 2 3

4 2 2 4 3 2 4 2 2 4 5

2 2 2 2 7 2 2 2 2 3

4 2 2 4 2 2 4 2 2

4 4 2 2 2

2 2 4 2 2

4 2 2 4 2 2

a
a a b

a
a a

a
a b a

a b

=
-

+ - + -
´ - - + + -
´ + + + + +
+ - - + - -
´ + + - +
+ + -
- - +

+ + +

As can be noted in figure 2, the above-mentioned phy-
sical quantities are all negative inside the star. The nature of
the graphs proves that the density, as well as, the radial and
tangential pressures are decreasing within the star.

4. The speeds of sound in radial and tangential directions
are as follows:

As can be noted from figure 3, sound speeds in both direc-
tions lie in the interval [0, 1], where we assume the speed of
light, c= 1. Therefore, the sound speeds are subluminal
inside the star.

5. The Null Energy Condition and Strong Energy Condition
for the anisotropic star implies the conditions, ρ+ pr� 0,

Figure 4. Fulfilment of energy conditions within the stellar interior.

Figure 5. Variation of pressure with density.
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Figure 3. Variation of radial and transverse sound speeds against r.
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ρ+ pt� 0 and ρ+ pr+ 2pt� 0, are satisfied everywhere inside
the compact star. Figure 4 shows that the aforementioned energy
conditions hold true throughout the star.

6. Figure 1 shows that the metric potentials inside the star
nicely match the exterior Schwarzschild metric functions at
the boundary.

7. Equation of state of the constituent matter of the star, if
assumed to be a perfect fluid, best described as P= P(ρ). In
the present study, we have determined the geometry of the
compact object. From the geometry, now, we can explore the
nature of the matter content of the star. In figure 5, pressure is
plotted as a function of the energy density. This indicates a
nearly linear relationship between pressure and energy den-
sity. In figure 6, the red (solid) line indicates the pressure-
energy density curve which best fits with the broken black
straight line given as pr= 0.4621ρ− 211.

8. Mass-radius curve is also important for inferring the
nature of the matter content of the star. Figure 7 shows the
plot of the mass of the star in units of solar mass against the
radius. The nature of the plot is consistent with the plots
reported by previous studies.

9. Expression for the moment of inertia of compact
astrophysical objects taking into consideration the effect of
General Relativity is remarkably different from the expression
for solid sphere given in mechanics. Using the slow rotation
approximation proposed by Hartle [41], a number of attempts
have been made for deriving an approximate expression for
the moment of inertia of a compact star [42–44]. We use the
approximate expression for the moment of inertia of the
strange star provided in [45].

( ) ( )MR0.4 1 402x= +

Here, M

R

km

M
x =


is the dimensionless compactness parameter

[46]. This value of the moment of inertia is valid up to the
maximum mass of the star. In the next section, we plot 
against the mass of the star (see figure 8). The plot clearly
shows a maximum value for the moment of inertia with the
increasing mass of the star.

8. Observational compatibility

The predicted values of mass and radius of the well-known
pulsar 4U1820− 30 are M = 1.58Me and R = 9.1 km,
respectively [47]. Using these predicted values, one can
immediately find out unknown constants α, β, F from
equations (32)–(34) as follows: α= 1478.49, β=− 1.11081
and F=161.67 . Here, we assume R= 30. With the input of
the calculated values of constants, we study the nature of

Figure 6. Variation of pressure with density.

Figure 7. Mass-radius curve.

Figure 8. Variation of the moment of inertia of the star with mass.
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different physical quantities in figures 9–12. In these plots, all
physical quantities are expressed in usual C.G.S. units, sub-
stituting the values of G and c in proper places. The plots
speak volumes about the physical viability of the model.
Figure 9 shows that the density of the matter inside the star is

maximum at the center and it gradually decreases towards the
boundary. Radial and tangential pressures are also maximum
at the center and the plots gradually decline toward the
boundary of the star (see figure 10). Though the tangential
pressure doesn’t vanish at the boundary, the radial pressure
becomes zero at the boundary of the star. The anisotropy is
zero at r= 0 and maximum at the surface of the star.

The mass function is increasing throughout the star and
vanishes at r= 0 (see figure 12). Pressure expressed as a
thermodynamic function of the energy density represents the
equation of state (EOS) of the constituent matter inside the
star. Figure 5 studies the nature of the EOS. The plot repre-
sents an almost linear EOS.

The model developed in the present paper can be useful
in describing pulsars of varied masses. In table 1, we use the
estimated values of masses and radii of RX J 1856− 37 [48],
EXO 1785− 248 [49], Her X-1 [50], PSR J 1614− 2230,
Cen X-3 and 4U 1608− 52 to study the values of important
model parameters.

The values of the physical quantities at physically significant
points of the tar are given in table 2. These values are sufficient to
justify the applicability of the model. Here, the notations ()|0 and
()|b are used to represent the calculated values of the physical
parameters at the center and surface of the star, respectively.

9. Equilibrium under three different forces

The static equilibrium of an anisotropic star under the grav-
itational, hydro-static, and anisotropic forces may be descri-
bed by the following equation:

( )( )
( ) ( )

M r p

r

p

r r
p pe

d

d

2
0, 41G r r

t r2
r

-
+

- + - =
n l-

where MG(r) is the gravitational mass of the star within the
radius r. Its value can be computed using the Tolman-Whit-
taker formula and the Einsteins field equations as follows:

( ) ( )M r r
1

2
e . 42G 2= n¢l n-

Figure 10. Fall-off behavior of radial and transverse pressure.

Figure 11. Radial variation of anisotropy.

Figure 9. Fall-off behavior of energy density. Figure 12. Verification of mass.
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Substituting the value of MG(r) in equation (41) we find

( ) ( ) ( )p
p

r r
p p

2

d

d

2
0. 43r

r
t r

n
r-

¢
+ - + - =

The above equation is equivalent to

( )F F F 0, 44g h a+ + =

where

( ) ( )F p
2

, 45g r
n

r= -
¢

+

( )F
p

r

d

d
, 46h

r= -

( ) ( )F
r

p p
2

. 47a t r= -

Using the equations (23)–(25), the expression for Fg, Fh and
Fa can be written in terms of model parameters as,

( ( ) ) ( ( ))
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which represent the gravitational, hydrostatics and anisotropic
forces, respectively.

The plot of the aforementioned forces is given in figure 13.
The figure shows that the negativity of gravitational force is
balanced by positive forces, like, hydro-static and anisotropic
force and thereby maintaining the static equilibrium of the system.

10. Stability analysis of the model

10.1. Adiabatic index

The adiabatic index for the anisotropic star is given by the
following equation:

( )
p

p

pd

d
, 51r

r

rr
r

G =
+

This quantity is closely connected to an anisotropic star’s
stability. Researchers [51] have reported the value of the
adiabatic index to remain in the range 4

3
G > for the stable

equilibrium of an isotropic sphere. Figure 14 shows the plot

of Γr. It can be noted that Γr satisfies the requirement for
stability everywhere inside the star.

10.2. Causality condition

In a realistic model of an anisotropic star, the sound speeds
inside the star must be subluminal, i.e., 0 1

pd

d
r 
r

,

0 1
pd

d
t 
r

. This is termed the causality condition. Utilizing

the ‘cracking’ concept proposed by Herrera [52], Abreau et. al
[53] showed that the probable condition for a model of a
compact star to be stable is v v1 0st sr

2 2 - - . Andréasson

[54] modified this range as ∣ ∣v v0 1st sr
2 2< - < . Figure 15

shows that the sound speeds are less than one inside the star.

Table 1. Values of model parameters.

Pulsar Mass (Me) Radius (km) R α β F

RX J 1856− 37 0.9± 0.2 ≈6 20 545.29 −0.7514 81.36
EXO 1785− 248 1.3± 0.2 8.849± 0.4 34 2134.86 −1.2282 180.68
Her X-1 0.85± 0.15 8.1± 0.41 34 1687.83 −0.7169 211.94
PSR J 1614− 2230 1.97± 0.04 9.69± 0.2 28 1202.03 −1.1091 156.56
Cen X-3 1.49± 0.08 9.178± 0.13 30 1310.32 −0.88439 175.88
4U1608− 52 1.74± 0.14 9.52± 0.15 28 1053.33 −0.8403 168.08
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Therefore, the causality condition is satisfied throughout
the star.

11. Discussions

In this paper, we have obtained an embedding class -I type
interior solutionto the Einstein field equations for an aniso-
tropic matter distribution. This has been achieved by
employing the Karmakar condition. The solutions we

obtained are regular and well-behaved and could be used to
describe a relativistic compact anisotropic star. All the phy-
sically relevant parameters e.g., metric potentials, density,
pressures, mass, and anisotropy are positive and singularity
free in every part of the star. The gradients of the matter
variables are negative throughout the structure indicating that
they pick a maximum value at the centre and gradually
decrease towards the boundary of the star. One interesting
feature of our approach is that we have not assumed any
equation of state relating to the pressure and density of the
matter composition of the star. Our approach enables us to
find a relationship between these thermodynamical para-
meters. The relationship between the energy density and
radial pressure which reflects the nature of the equation of
state (EoS) of the matter distribution shows an almost linear
relationship. The Karmakar condition allowed us to determine
both the metric potentials and the nature of the EoS that can
be predicted from the plot.

The nature of the mass-radius curve obtained in the
present study agrees very well with the plots reported in the
literature. The plot of the moment of inertia against the mass
of the star shows a maximum value for the moment of inertia
with the increasing mass of the star.

A stable configuration demands that it should satisfy the
TolmanOppenheimerVolkoff equilibrium condition. The sta-
bility of the model has been demonstrated graphically where
the gravitational force is counterbalanced by the combined
effect of the anisotropic and hydro-static force. A few other
parameters that should be verified for stable conditions are

Figure 15. v vt r
2 2- is plotted against r.

Figure 13. The variation of three different forces acting on the
system is plotted against r.

Figure 14. The relativistic adiabatic index plotted against r.

Table 2. Values of physical quantities.

Pulsar ρ|0 ρ|b ∣dp

d 0
r

r
∣dp

d b
r

r
∣dp

d 0
t

r
∣dp

d b
t

r (ρ+ pr + 2pt)|0 (ρ+ pr + 2pt)|b

RX J 1856− 37 1390 950 0.70 0.38 0.65 0.25 2012 1023
EXO 1785− 248 674 411 0.38 0.29 0.32 0.18 931 462
Her X-1 496 382 0.48 0.33 0.41 0.21 614 416
PSR J 1614− 2230 872 432 0.79 0.42 0.78 0.28 1670 508
Cen X-3 660 425 0.64 0.36 0.58 0.23 1035 469
4U 1608− 52 716 425 0.87 0.41 0.84 0.27 1248 482
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also checked here. We verify the sound speeds in both radial
and transverse directions obey the corresponding limit. Fur-
ther, Herrera’s cracking condition has been verified in our
proposed model.

It was first described by Chandrasekhar [55] that any
stellar configuration will maintain its stability if the adiabatic
index Γ> 4/3. This has been clearly shown graphically.

One interesting feature of the assumed metric of our
model is that under a particular approximation, it is reduced to
the well-known Tolman metric.
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