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Abstract
In the stabilizer formalism of fault-tolerant quantum computation, stabilizer states serve as
classical objects, while magic states (non-stabilizer states) are a kind of quantum resource (called
magic resource) for promoting stabilizer circuits to universal quantum computation. In this
framework, the T-gate is widely used as a non-Clifford gate which generates magic resource
from stabilizer states. A natural question arises as whether the T-gate is in some sense optimal for
generating magic resource. We address this issue by employing an intuitive and computable
quantifier of magic based on characteristic functions (Weyl transforms) of quantum states. We
demonstrate that the qubit T-gate, as well as its qutrit extension, the qutrit T-gate, are indeed
optimal for generating magic resource among the class of diagonal unitary operators. Moreover,
up to Clifford equivalence, the T-gate is essentially the only gate having such an optimal
property. This reveals some intrinsic optimal features of the T-gate. We further compare the
T-gate with general unitary gates for generating magic resource.
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1. Introduction

A convenient and popular framework for fault-tolerant
quantum computation is the stabilizer formalism with magic
state injection [1–22]. The celebrated Gottesman–Knill the-
orem shows that stabilizer circuits (composed of Clifford
unitaries, Pauli measurements, conditioning on measurement
outcomes, and classical randomness) can be efficiently
simulated by classical computers [1, 8], while universal fault-
tolerant quantum computation can be achieved via injection
of magic states (non-stabilizer states) or magic-resource-
generating gates (e.g. the T-gate) into stabilizer circuits [1–6].

Various protocols for magic state distillation, which
generate more refined magic states from coarse ones have
been extensively studied [6, 9–11, 14–16, 21]. This is helpful
in paving the way for generating magic resource in order to
implement quantum computation via the stabilizer formalism
and magic resource.

For controlling and manipulating magic resource, it is
desirable to quantify the amount of magic (non-stabilizerness)
from different perspectives. Many quantifiers of magic have

been introduced in various contexts. For example, the sum
negativity (with the associated mana and thauma) uses the
negative part of the discrete Wigner functions as an indicator
of magic [11, 20, 21]. The stabilizer rank, defined as the
minimal number of components in the expansion of a state in
terms of stabilizer states, was introduced in [13, 18]. The
relative entropy of magic (with the associated max-relative
entropy and min-relative entropy of magic), and the robust-
ness of magic, were studied in [11, 15, 17]. Apart from the
sum negativity, these quantifiers of magic are in general quite
difficult to calculate. The sum negativity is computable,
however, it relies heavily on the discrete Wigner functions in
odd dimensions, which excludes its direct usage in other
dimensions. In particular, the ubiquitous qubit case is exclu-
ded. It is desirable to seek easily computable quantifiers of
magic applicable to all dimensions and not depending on the
discrete Wigner functions [22].

The T-gate plays a crucial role in the Clifford +T gate
set, which is approximately universal for fault-tolerant
quantum computation [23–35]. The qutrit version of the qubit
T-gate is introduced in [10, 23, 27], and shares a variety of
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similar properties with the qubit T-gate. The T-count (the
number of T-gate used in a circuit) is widely used as a
benchmark for the complexity of a circuit [24, 25]. A basic
feature of the T-gate lies in that it is a powerful and con-
venient gate for generating magic states from stabilizer states,
and can be fault-tolerantly implemented.

In this context, a natural question arises as how powerful
or optimal the T-gate is for generating magic resource. The
present work is devoted to addressing this issue. For this
purpose, we will employ a quantifier of magic based on
characteristic functions (Weyl transforms) of quantum states
to assess the power (capability) of quantum gates for gen-
erating magic resource. We will demonstrate that both the
qubit T-gate and qutrit T-gate are optimal for generating
magic resource in the class of diagonal unitary operators, and
up to Clifford equivalence, they are essentially the only ones
having this optimality.

The remainder of the work is structured as follows. In
section 2, as preliminaries, we review some basic aspects of
the stabilizer formalism, in which states are classified into
stabilizer states and magic states, with the latter regarded as a
magic resource serving as quantumness for promoting stabi-
lizer circuits to universal quantum computation. In section 3,
we study magic-resource-generating power of quantum gates
(i.e. unitary operators) and reveal some optimal features of the
T-gate for both qubit and qutrit systems. We employ char-
acteristic functions (which are well-defined on all dimensions)
rather than the discrete Wigner functions (which are only
well-defined on odd dimensions) to construct a computable
quantifier of magic. We consider both the maximal and
average scenarios for quantifying magic-resource generating
power. Finally, we present a summary and discussion in
section 4. The detailed proof of the main result, proposition 2,
is presented in the appendix.

2. Preliminaries: stabilizer states and magic states

In this section, we review the basic features of the stabilizer
formalism, which plays an important role in quantum error
correction and fault-tolerant quantum computation [1–9,
11–22]. The Pauli group (discrete Heisenberg-Weyl group)
and the Clifford group are basic ingredients for constructing
stabilizer circuits, which can be efficiently simulated by
classical means, while non-Clifford gates such as the T-gate
are necessary for universal quantum computation.

We first recall the Pauli group, which will play a crucial
role in this work. For a d-dimensional quantum system d

with computational basis j j: d{∣ }ñ Î , we may regard
 d0, 1, , 1d { }= - (the ring of integers modulo d) as a
discrete configuration space of this system, and identify

L d
2 ( ) (the set of complex functions on d) with  ,d regar-

ded naturally as a finite-dimensional Hilbert space. In this
space, two fundamental unitary operators [36]

X k k Z k k1 , , e ,
k

d

k

d
k d

0

1

0

1
2 i∣ ∣ ∣ ∣å å w w= + ñá = ñá = p

=

-

=

-

emerge naturally and serve as building blocks for finite-
dimensional quantum mechanics. Clearly,

X k k Z k k k1 , , .k
d∣ ∣ ∣ ∣wñ = + ñ ñ = ñ Î

The arithmetic is modular d, and thus |d〉= |0〉. Associated
with these two basic operators, the discrete Heisenberg-Weyl
operators are defined as

D X Z k l, , ,k l
kl k l

, t= Î

where e .dit w= - = -p Here we emphasize that Dk,l are
well defined for all k l, ,Î though we will mainly consider

k l, .dÎ We call  k l, d d( ) Î ´ (discrete phase-space) a
phase-space point. The discrete Heisenberg-Weyl operators
constitute a projective representation of the translation groups
 d d´ and  ,´ and satisfy

D D D k l s t, , , , . 1k l s t
ls kt

k s l t, , , ( )t= Î-
+ +

Moreover,

D D d k l s ttr , , , , ,k l s t k s l t d, , , ,( )† d d= Î

and D k l: ,
d k l d

1
,{ }Î constitutes an orthonormal basis for

the d2-dimensional operator space L ,d( ) the set of all
operators on d equipped with the Hilbert-Schmidt inner
product A B A Btr .∣ ( )†á ñ =

For the convenience of our approach, we take the Pauli
group (discrete Heisenberg-Weyl group) as

 D j k l: , , .d
j

k l d d, 2{ } t= Î Î

In particular, c c c c c1, , , : 1, i ,x y z2 { } s s s= =   with σx,
σy, σz being the standard Pauli operators. The Clifford group

V V V:d d d d{ }†   = Î =

is the normalizer (natural symmetry group) of d in the full
unitary group d on .d This group plays an instrumental role
in the stabilizer quantum computation.

A stabilizer state is defined as a common eigenstate (with
common eigenvalue 1) of a maximal Abelian subgroup of the
Clifford group .d In this context, the subgroup is called the
stabilizer group of the stabilizer state. The set of (pure) sta-
bilizer states in d is denoted by ,d which consists exactly of

d d 1d∣ ∣ ( ) = + elements [7]. In prime power dimensions,
any state of the form V|j〉 is a stabilizer state. Here j d∣ ñ Î is
any computational basis state and V dÎ is any Clifford
operator [7, 11]. Convex mixtures (i.e. probabilistic mixtures)
of pure stabilizer states are called mixed stabilizer states. Any
state (pure or mixed) that cannot be expressed as a convex
mixture of pure stabilize states is called a magic state (non-
stabilizer state). Any magic state is regarded as magic
resource.

The sets of pure stabilizer states in d for d= 2 and 3 are
listed in tables 1 and 2, respectively, which will be needed in
the sequel.

For the purpose of studying the power of quantum gates
for generating magic resource, we need to quantify magic
resource [11, 14–22]. For any quantum state (pure or mixed)
ρ on d, we employ the following quantifier


M Dtr 2

k l
k l

,
,

d

( ) ∣ ( )∣ ( )år r=
Î

2
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introduced in [22], which is easy to compute and has a variety
of useful properties:

(a)  M d d1 1 1 1 .( ) ( )r + - +
(b) M(ρ) is invariant under the Clifford operations in the

sense that M V V M V, .d( ) ( )† r r= " Î
(c) M(ρ) is convex in ρ.
(d) Among all states (pure or mixed), M(ρ) achieves the

minimal value 1 if and only if ρ= 1/d is the maximally
mixed state. In view of this property, one may prefer to
employ M0(ρ)=M(ρ)− 1 as a more appropriate quanti-
fier of magic. However, we will not make this
convention.

(e) Among pure states, M(|ψ〉〈ψ|) achieves the minimal
value d if and only if |ψ〉 is a stabilizer state.
Consequently, all pure stabilizer states have the same
value of magic (i.e. d). In particular, by the above
properties, we have the following simple criterion for
non-stabilizerness (magic states): if M(ρ)> d, then the
state ρ is magic. It should be noticed that this is only a
sufficient, but not necessary, condition for a state on d

to be magic.

A remarkable feature of M(ρ) is that it achieves the
maximal value d d1 1 1( )+ - + by any SIC-POVM

fiducial state (assuming its existence, which has been proved
in many dimensions) [22]. In particular, it is known that such
fiducial states exist in many dimensions, including the cases
d= 2, 3 [37, 38]. Recall that a SIC-POVM (symmetric
informationally complete positive operator valued measure)
in d is a POVM {Eα: α= 1, 2, L ,d2} (i.e.

E E 10, d
1

2

å =a a a= ) consisting of d2 rank-one operators
with equal trace and equal overlap and spanning the whole
state space [37, 38]. It has been shown that SIC-POVMs exist
in many dimensions, although the general existence remains
an outstanding open problem (Zauner’s conjecture) [37–53].
A SIC-POVM fiducial state is a pure state f d∣ ñ Î such that

its orbit E D f f D k l: ,k l d k l k l d,
1

, ,{ ∣ ∣ }†= ñá Î under the Pauli
group constitutes a SIC-POVM. Fiducial states have been
explicitly constructed in many dimensions, and most SIC-
POVMs are constructed from fiducial states [37, 38].

For any quantum gate described by a unitary operator U
on  ,d by employing M( · ) defined by equation (2) as a
quantifier of magic, we introduce the following quantities

M U M Umax ,max
d

( ) ( ∣ )
∣ 

y= ñ
yñÎ

M U M U
1

,
d

ave

d

( )
∣ ∣

( ∣ )
∣ 
å y= ñ
yñÎ

which characterize the maximal and average magic-resource-
generating powers of U, respectively. Here d d 1d∣ ∣ ( ) = +
is the number of pure stabilizer states in d [7]. We will use
these quantities to characterize the T-gate from an optimal
perspective.

3. Optimality of T-gate for generating magic-
resource

In this section, we evaluate explicitly the magic-resource-
generating power of some unitary gates in the qubit (d= 2)
and qutrit (d= 3) cases. In particular, we illuminate some
optimal features of the T-gate: In these low dimensions, the T-
gate is optimal for generating magic resource among the class
of diagonal unitary gates.

3.1. Qubit T-gate

For a qubit system (d= 2) with computational basis {|0〉,
|1〉}, there are six pure stabilizer states [7, 16]

1

2
0 1 , i

1

2
0 i 1 , 0 , 1 ,∣ (∣ ∣ ) ∣ (∣ ∣ ) ∣ ∣ñ = ñ  ñ  ñ = ñ  ñ ñ ñ

which correspond to the three pairs of antipodal points in the
intersection of the three principal axes and the Bloch sphere,
and may be partitioned into three mutually unbiased bases
{|± 〉}, {|± i〉}, and {|0〉, |1〉} for  .2 Geometrically, they
constitute the vertex of the stabilizer octahedron inscribed in
the qubit Bloch sphere. These states are listed in table 1
together with the corresponding stabilizer generators.

Table 2. Qutrit stabilizer states |fj〉, j= 1, 2, L,12, and the
corresponding stabilizer generators, which stabilize the
corresponding states and generate the corresponding stabilizer
groups. For example, Z|0〉= |0〉, and Z generates the corresponding
stabilizer group {1, Z, Z†}, which is a maximal Abelian subgroup of

3 stabilizing the state |0〉. Noting that XX† = ZZ† = 1, X3 = Z3 = 1,
XZ= ω−1ZX, ω= e2πi/3.

Stabilizer state Stabilizer generator

|f1〉= |0〉 Z
|f2〉= |1〉 ω−1Z
|f3〉= |2〉 ωZ

0 1 2 34∣ (∣ ∣ ∣ )f ñ = ñ + ñ + ñ X
0 1 2 35

1∣ (∣ ∣ ∣ )f w wñ = ñ + ñ + ñ- ω−1X
0 1 2 36

1∣ (∣ ∣ ∣ )f w wñ = ñ + ñ + ñ- ωX
0 1 2 37∣ (∣ ∣ ∣ )f wñ = ñ + ñ + ñ XZ

0 1 2 38∣ ( ∣ ∣ ∣ )f wñ = ñ + ñ + ñ ω−1XZ
0 1 2 39∣ (∣ ∣ ∣ )f wñ = ñ + ñ + ñ ωXZ

0 1 2 310
1∣ (∣ ∣ ∣ )f wñ = ñ + ñ + ñ- XZ†

0 1 2 311
1∣ (∣ ∣ ∣ )f wñ = ñ + ñ + ñ- ω−1XZ†

0 1 2 312
1∣ ( ∣ ∣ ∣ )f wñ = ñ + ñ + ñ- ωXZ†

Table 1. Qubit stabilizer states and the corresponding stabilizer
generators, which stabilize the corresponding states and generate the
corresponding maximal Abelian subgroups of 2 stabilizing the
corresponding states. For example, σx|+ 〉= |+ 〉, and σx generates
the maximal Abelian subgroup {1, σx} stabilizing the state |+ 〉. The
three operators σx, σy and σz are the Pauli spin operators (matrices).

Stabilizer state |+ 〉 |− 〉 |+ i〉 |− i〉 |0〉 |1〉

Stabilizer generator σx −σx σy −σy σz −σz

3
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In magic state distillation and gate synthesis, the non-
Clifford qubit T-gate [6]

T 0 0 e 1 1

e e 0 0 e 1 1

1 0
0 e

, 3

2
i 4

i 8 i 8 i 8

i 4
⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣
( ∣ ∣ ∣ ∣)

( )

= ñá + ñá

= ñá + ñá

=

p

p p p

p

-

plays a prominent role and has been widely used as a
benchmark for non-stabilizerness of qubit gates. Due to the
presence of ±π/8 (corresponding to rotation with angle π/8),
this T-gate is also called π/8-gate, and if one ignores the
overall phase eiπ/8, one also regards e−iπ/8|0〉〈0|+ eiπ/8|1〉〈1|
as the π/8-gate.

To address the optimality of the qubit gate T2 defined by
equation (3), consider the family of qubit diagonal unitary
gates

U 0 0 e 1 1
1 0
0 e

, 0, 2 , 4i
i

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ [ ) ( )q p= ñá + ñá = Îq
q

q

which includes the T-gate T2=Uπ/4 as a special instance. By
simple and direct calculations, we have

M U M U i 1 cos sin ,( ∣ ) ( ∣ ) ∣ ∣ ∣ ∣q qñ =  ñ = + +q q

M U M U0 1 2.( ∣ ) ( ∣ )ñ = ñ =q q

Consequently

M U 1 cos sin ,max ( ) ∣ ∣ ∣ ∣q q= + +q

M U
4

3

2

3
cos sin ,ave ( ) (∣ ∣ ∣ ∣)q q= + +q

from which we readily conclude that in the qubit gate set
{Uθ: θä [0, 2π)} defined by equation (4), the qubit T-gate
T2=Uπ/4 has the maximal magic-resource-generating power
in the sense that

M U M Tmax 1 2 ,max max 2( ) ( )= = +
q

q

M U M Tmax
1

3
4 2 2 .ave ave 2( ) ( ) ( )= = +

q
q

Due to the Clifford invariance of the quantifier of magic
M(ρ), we conclude that the gate VT2W also achieves the above
maximal value of magic-resource-generating power for any
Clifford unitaries V W, .2Î

Since the qubit T-gate T2 is optimal for generating magic
resource among the diagonal unitary gates, it is natural to ask
whether it is optimal in the set of all unitary gates. By
properties (a) and (c) of the quantifier of magic M(ρ), we
know that for a qubit system (d= 2),

M U d dmax 0 1 1 1 1 3 ,
U

( ∣ ) ( )ñ = + - + = +

where the max is taken over 2 (all unitary operators on  .2)
Consequently, the maximal magic-resource-generating power
among all unitary operators is

M Umax 1 3 . 5
U

max ( ) ( )= +

For example, any unitary operator U 2Î satisfying

U 0 cos 0 e sin 1 , cos 2
1

3
i 4∣ ∣ ∣ ( )b b bñ = ñ + ñ =p

achieves the above maximal value.
In view of the fact that

M T 1 2 1 3 ,max 2( ) = + < +

we conclude that the qubit T-gate T2 is not optimal in the
whole set of unitary gates. However, by simple preprocessing
via rotations

R
cos

2
sin

2

sin
2

cos
2

, 0, 2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

[ )

g g

g g g p=
-

Îg

the maximal magic-resource-generating power in all unitary
gates can be achieved. We summarize the results as follows.

Proposition 1. Among the gate set U : 0 2{ }q p<q of
diagonal unitary operators on  ,2 the qubit T-gate T2 is
optimal for generating magic resource in the sense that

M U M Tmax 1 2 .max max 2( ) ( )= = +
q

q

Among the gate set of all unitary operators on  ,2 the
combination of the qubit T-gate T2 and the rotation R *g is
optimal for generating magic resource in the sense that

M U M T Rmax 1 3 , 6
U

max max 2( ) ( ) ( )*= = +g

where 0*g g= or 2 0p g- with 0g determined by cos 0g =
1 3 , 0, 2 .0 [ ]g pÎ

To establish equation (6), noting equation (5), it suffices
to show that

M T R 1 3 .max 2( )* = +g

By direct calculations, we have

M T R

M T R i

M T R M T R

1 sin 2 cos

1 3 sin ,

1 2 ,

0 1 1 2 sin cos

1 3 cos ,

2

0

2

2 2

0

( ∣ )
( )

( ∣ )
( ∣ ) ( ∣ )

( )

g g

g g

g g

g g

ñ = + +

= + +

 ñ = +

ñ = ñ = + +

= + -

g

g

g g

from which it can be readily checked that

M T R M T Rmax 1 3 .max 2 max 2( ) ( )*= = +
g

g g

Of course, in view of the Clifford invariance of the
quantifier of magic M(ρ), the gate VT R W2 *g also achieves the
above maximal value for any Clifford unitaries V W, .2Î

3.2. Qutrit T-gate

For a qutrit system (d= 3) with computational basis {|0〉, |1〉,
|2〉}, there are 3(3+ 1)= 12 pure stabilizer states, which are

4
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listed in table 2 together with the corresponding stabilizer
generators. It is remarkable that these 12 stabilizer states can
be partitioned into 4 mutually unbiased bases of 3 as

B i: 1, 2, 3 , 0, 1, 2, 3.i 3{∣ }f m= ñ = =m m+

The qutrit T-gate T3 is defined as [23, 27]

T 0 0 e 1 1 e 2 2

1 0 0
0 e 0
0 0 e

, 7

3
2 i 9 2 i 9

2 i 9

2 i 9

⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣ ∣ ∣ ∣ ∣

( )

= ñá + ñá + ñá

=

p p

p

p

-

-

which is a diagonal unitary operator. This gate generates a
group T k: 0, 1, ,8k

3{ }= consisting of elements of the forms
Z j (which are Pauli operators), T3Z

j and H2T3H
2Z j (which are

Clifford equivalent to T3). Here

H Z
1

3

1 1 1
1
1

,
1 0 0
0 0
0 0

, 82

2 2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )w w

w w
w

w
= =

are the qutrit Hadamard gate H and the Z operator in a qutrit
system (in the matrix form relative to the computational basis)
and ω= e2πi/3 henceforth. Indeed, by noting that

T H T H Z T H T H, ,3
2 2

3
2 2

3
2

3
2= =

we readily derive that

T Z T T Z T H T H Z

T Z T T Z T H T H

, , ,

, , .
3
3 2

3
4

3
2

3
5 2

3
2

3
6

3
7

3 3
8 2

3
2

= = =

= = =

Consider the family of qutrit diagonal gates

U 0 0 e 1 1 e 2 2

1 0 0
0 e 0
0 0 e

, 9

,
i i

i

i

1 2
1 2

1

2

⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣ ∣ ∣ ∣ ∣

( )

= ñá + ñá + ñá

=

q q
q q

q

q

where θ1, θ2ä [−π, π). Without loss of generality, we may
assume that θ1� θ2. We have the following optimal char-
acterization of T3, the qutrit version of the T-gate.

Proposition 2. In the qutrit gate set U :,1 2{ p-q q
1 2 }q q p< defined by equation (9), the qutrit T-gate

T U3 2 9,2 9= p p- has the maximal magic-resource-generating
power in the sense that

M U M Tmax 1 2 3 , 10
,

max , max 3
1 2

1 2( ) ( ) ( )= = +
q q

q q

M U M Tmax
3

2
1 3 , 11

,
ave , ave 3

1 2
1 2( ) ( ) ( ) ( )= = +

q q
q q

where the max is over , , .1 2 [ )q q p pÎ - Moreover, all
solutions of ,1 2( )q q in the domain  1 2p q q p< for
U ,1 2q q achieving the maximal values of magic-resource-
generating power are listed in table 3. Any gate VT W3 also
achieves the above maximal value for any Clifford uni-
taries V W, 3Î .

The detailed proof is deferred to the appendix.
For numerical illustration, we depict the graph of

M Umax ,1 2( )q q in figure 1, which clearly exhibits the same
feature for the maximal value as in proposition 2.

Let (noting here ω= e2πi/3)

S 0 0 1 1 2 2
1 0 0
0 1 0
0 0

12
⎛

⎝
⎜

⎞

⎠
⎟∣ ∣ ∣ ∣ ∣ ∣ ( )w

w
= ñá + ñá + ñá =

be the qutrit phase gate, which is a Clifford unitary since
SXS†= XZ and SZS†= Z. The following result shows that up
to Clifford equivalence, the gate T3 is essentially the only gate
among the diagonal unitary gates for optimally generating the
magic resource: All the gates listed in table 3 are Clifford
equivalent to the gate T3, i.e. are of the forms VT3W for some
Clifford unitaries V W, .3Î More explicitly

• U−2π/9,2π/9= T3,
• U−4π/9,4π/9=H2T3H

2Z2,
• U−8π/9,8π/9= T3Z

2,
• U−8π/9,−4π/9= T3Z

2S,
• U−8π/9,2π/9= T3Z

2S2,
• U−4π/9,−2π/9=H2T3H

2Z2S2,
• U−2π/9,8π/9= T3S.
• U2π/9,4π/9=H2T3H

2S,
• U4π/9,8π/9= T3ZS

2.

Here H is the qutrit Hadamard gate defined by equation (8),
and S is the qutrit phase gate defined by equation (12). The
proof is via direct verification.

Figure 1. The graph of M Umax ,1 2( )q q on the domain θ1, θ2 ä [−π,
π). We see that there are 18 pairs of (θ1, θ2) achieving the same
maximal value 1 2 3 4.4641.+ » In the region −π� θ1 � θ2 < π,
there are 9 pairs of (θ1, θ2), as listed in table 3, which achieve the
maximal value. We also observe that M U 3max ,1 2( )q q .

Table 3. Gates U 0 0 e 1 1 e 2 2,
i i

1 2
1 2∣ ∣ ∣ ∣ ∣ ∣= ñá + ñá + ñáq q
q q with the

maximal magic-resource-generating power, which include the qutrit
T-gate T3 = U−2π/9,2π/9. All gatesU ,1 2q q with (θ1, θ2) in the following
table are optimal for generating magic resource among the diagonal
set of unitary gates, and yield the same value 1 2 3+ of maximal
magic-resource-generating power. Actually, all these gates are
Clifford equivalent to T3.

θ1
2
9

- p 4
9

- p 8
9

- p 8
9

- p 8
9

- p 4
9

- p 2
9

- p 2
9
p 4

9
p

θ2
2
9
p 4

9
p 8

9
p 4

9
- p 2

9
p 2

9
- p 8

9
p 4

9
p 8

9
p
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We emphasize that although in the gate set
U : , , ,, 1 21 2{ [ )}q q p pÎ -q q the qutrit T-gate T3 has the max-
imal magic-resource-generating power, there exist non-diag-
onal gates possessing higher magic-resource-generating
power since, for a qutrit system (d= 3)

M

M T

max 1 3 1 3 1

5 1 2 3 .max 3

( ) ( )

( )

r = + - +

= > = +

r

For example, any unitary operator U0 3Î satisfying

U 0
1

2
1 20∣ (∣ ∣ )ñ = ñ - ñ

has the maximal magic-resource-generating power

M U M Umax 5.
U

max 0 max
d

( ) ( )


= =
Î

We summarize the results in table 4.

4. Summary

In the stabilizer formalism of fault-tolerant quantum compu-
tation, the Clifford +T gate set is usually adapted as the basic
structure. Since by the Gottesman–Knill theorem, the Clifford
circuits can be efficiently simulated by classical means, the
quantum power comes from the T-gate and its interaction with
Clifford circuits. The T-gate is widely employed to generate
magic resource (magic states) from stabilizer states. Conse-
quently, it is desirable to study the power of the T-gate for
generating magic resource, and to ask whether it is optimal in
some sense.

By employing a natural quantifier of magic (non-stabi-
lizerness), we have shown that the qubit T-gate and qutrit T-
gate are indeed optimal for generating magic resource among
the class of diagonal unitaries, and furthermore, up to Clifford
equivalence, they are essentially the only ones. This high-
lights a fundamental and optimal feature of the T-gate, and
provides new support for the utilization of the T-gate.

For higher dimensional systems, the calculation is con-
siderably more complicated, and we may expect similar
results. However, this calls for further investigations. It is
certainly worthwhile to classify and identify the optimal gates
for generating magic resource in the general case for other
quantifiers of magic, such as the relative entropy of magic and
sum negativity.
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Appendix

Here we present the detailed proof of proposition 2 in
section 3.

We first establish equation (10). For the qutrit stabilizer
states listed in table 2, by direct calculations, we have

M U j3, 1, 2, 3 A1j,1 2( ∣ ) ( )f ñ = =q q

and

M U x j1
2

3
3 2 , 4, ,12

A2

j
k

k,
0

2

1 2( ∣ )

( )

åf ñ = + + =q q
=

with

x
k k

k
k

cos
2

3
cos

2

3

2

2

3

cos
2

3

2

2

3
, 0, 1, 2,

k ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

a
p a b p

a b p

= + + - + +

+ - - + =

and

2 , 2 , 2 , 0 .1 2 1 2[ ) ( ]a q q p p b q q p= + Î - = - Î -

Noting that

x
k

xcos
2

3
0, 0, 2 ,

k 0

2
⎛
⎝

⎞
⎠

[ )å p
p+ = " Î

=

we obtain

x 0. A3
k

k
0

2

( )å =
=

We need to maximize the quantity

M U x1
2

3
3 2

k
kmax ,

0

2

1 2( ) å= + +q q
=

over the region −π� θ1� θ2< π. By the Cauchy–Schwarz
inequality, we have

x x3 2 3 2 1 27,
k

k
k

k
k0

2 2

0

2

0

2
2

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )å å å+ + =
= = =

with the equality holding if and only if

x x x .0 1 2= =

Combined with equation (A3), we have

x x x 0.0 1 2= = =

From x0= 0 we obtain

cos cos
2

3

2
cos

2

3

2
0. A4⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )a
a b a b

+ - + + - - =

Table 4. Comparison between magic-resource-generating power for
diagonal and general (non-diagonal) unitary gates in qubit and qutrit
systems. Here d is the set of diagonal unitary operators, which is a
subgroup of the set d of all unitary operators.

d M U M TmaxU dmax maxd ( ) ( ) =Î M UmaxU maxd ( )Î

2 (qubit) 1 2+ 1 3+
3 (qutrit) 1 2 3+ 5
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From x1= 0 we obtain

cos cos
2

3

2

cos
2

3

2
cos

2

3

sin sin
2

3

2

sin
2

3

2
sin

2

3
0.

⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

a
a b

a b p

a
a b

a b p

+ - +

+ - -

+ + - +

+ - - =

Combined with equation (A4), we obtain

sin sin
2

3

2
sin

2

3

2
0. A5⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )a
a b a b

+ - + + - - =

Now equations (A4) and (A5) can be equivalently
rewritten as

2 cos
2

1 2 cos
2

cos
3

2
0, A62 ( )a a b

- + =

2 sin
2

cos
2

cos
3

2
0, A7⎛

⎝
⎞
⎠

( )a a b
- =

respectively. The solutions of equations (A6) and (A7) can be
directly obtained by considering the following exhaustive
cases:

(i) From equation (A7), we conclude that either sin 0
2
=a

or cos cos 0.
2

3

2
- =a b First consider the case

sin 0,
2
=a then α=−2π, 0 (noting that α ä [−2π,

2π)). We have two subcases

(a) α=−2π, then θ1= θ2=−π and β= θ1− θ2= 0. This
subcase is excluded by equation (A6) since it cannot be
satisfied.

(b) α= 0, then cos 1,
2
=a and by equation (A6),

cos ,3

2

1

2
= -b which in turn implies that

, ,3

2

2

3

4

3

8

3
= - - -b p p p (noting that β ä (−2π, 0]), that is,

4

9
,

8

9
,

16

9
.b

p p p
= - - -

Consequently, in this subcase, we obtain three solutions
of equations (A6) and (A7) as

2

9
,

4

9
,

8

9
.1 2q q

p p p
= - = - - -

In particular, the qutrit T-gate T3 corresponds to U ,1 2q q
with

2

9
.1 2q q

p
= - = -

This establishes equation (10).
For clarity, we list the above optimal solutions in

table A1.

(ii) Now consider the case cos cos 0,
2

3

2
- =a b then com-

bined with equation (A6), we have cos .3

2

1

2
= b We

have two subcases:

(a) cos .3

2

1

2
= -b In this subcase, cos .

2

1

2
= -a Conse-

quently, , 33

2 3 3
p p= -  - +b p p (noting that β ä

(−2π, 0]), i.e. , , ,4

9

8

9

16

9
b = - - -p p p and 4

3
a =  p

(noting that α ä [−2π, 2π)). In this subcase, we obtain
the optimal solutions as listed in table A2 (noting that we
require θ1, θ2ä [−π, π), θ1� θ2).

(b) cos .3

2

1

2
=b In this subcase, cos .

2

1

2
=a Consequently,

, 2 , 23

2 3 3 3
p p= - - - - +b p p p (noting that β ä (−2π,

0]), i.e. , , ,2

9

10

9

14

9
b = - - -p p p and

2 3
= a p (noting that

αä [−2π, 2π)). In this subcase, we obtain the optimal
solutions as listed in table A3 (noting that we require θ1,
θ2ä [−π, π), θ1� θ2).

We list all solutions (θ1, θ2) of equations (A6) and (A7)
achieving the maximal magic-resource-generating power in
table 3 in section 3. The maximal value is

M Umax 1
2

3
27 1 2 3 .

,
max ,

1 2
1 2( ) = + = +

q q
q q

From the above derivation, any gate U ,1 2q q with (θ1, θ2) in
table 3, as well as any of its Clifford equivalent, also has the
maximal magic-resource-generating power, with the maximal
value

M U M Tmax 1 2 3 .
,

max , max 3
1 2

1 2( ) ( )= = +
q q

q q

Finally, equation (11) follows readily from equation (10)
since from equations (A1) and (A2), we have

M U x

M U

1

12
3 3 9 1

2

3
3 2

3

4
1 ,

k
kave ,

0

2

max ,

1 2

1 2

⎜ ⎟⎜ ⎟
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠
( )

( ( ))

å= ´ + + +

= +

q q

q q

=

which implies that the solutions of (θ1, θ2) for achieving the
maximal value of M Uave ,1 2( )q q are the same as those
for M Umax ,1 2( )q q .

Table A1. Optimal solutions for the case (i).

θ1
2
9

- p 4
9

- p 8
9

- p

θ2
2
9
p 4

9
p 8

9
p

Table A2. Optimal solutions for the subcase (ii)(a).

θ1
8
9

- p 4
9
p

θ2
4
9

- p 8
9
p

Table A3. Optimal solutions for the subcase (ii)(b).

θ1
8
9

- p 4
9

- p 2
9

- p 2
9
p

θ2
2
9
p 2

9
- p 8

9
p 4

9
p
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