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Abstract
Disease is a serious threat to human society. Understanding the characteristics of disease
transmission is helpful for people to effectively control disease. In real life, it is natural to take
various measures when people are aware of disease. In this paper, a novel coupled model
considering asymmetric activity is proposed to describe the interactions between information
diffusion and disease transmission in multiplex networks. Then, the critical threshold for disease
transmission is derived by using the micro-Markov chain method. Finally, the theoretical results
are verified by numerical simulations. The results show that reducing the activity level of
individuals in the physical contact layer will have a continuous impact on reducing the disease
outbreak threshold and suppressing the disease. In addition, the activity level of individuals in
the virtual network has little impact on the transmission of the disease. Meanwhile, when
individuals are aware of more disease-related information, the higher their awareness of
prevention will be, which can effectively inhibit the transmission of disease. Our research results
can provide a useful reference for the control of disease transmission.

Supplementary material for this article is available online

Keywords: asymmetric activity, information diffusion, disease transmission, activity level,
multiplex networks

(Some figures may appear in colour only in the online journal)

1. Introduction

Diseases are a serious threat to human society, for example,
COVID-19, tuberculosis and influenza may cause many dis-
asters to public security and individuals’ health [1]. How to
prevent and control diseases effectively has become an impor-
tant and urgent problem in the field of public health, it is of
great practical significance to analyze the transmission of dis-
eases. In this regard, the modeling of disease transmission has
attracted great attention in different research fields [2, 3].

The study of disease transmission has a long history,
dating back to the early 20th century [4, 5]. In 1927, the
famous ‘compartment model’ was established by Kermack
and McKendrick, and then the theoretical threshold of disease

transmission was obtained [6]. In the following decades,
almost all relevant studies have cited the core hypothesis of
the compartment model, that is, assuming that individuals are
evenly mixed in space. After that, some classical mathema-
tical models such as SIS (susceptible–infected–susceptible)
model and SIR (susceptible– infected–recovered) model have
laid the foundation in the field of disease transmission [7, 8].
Based on these classical disease transmission models, a ter-
rific amount of work has been completed to explore the
characteristics of disease transmission. At the end of the 20th
century, small-world networks and scale-free networks have
been widely studied [9], which initiated a new perspective on
disease transmission [10, 11]. It has been found that the fra-
mework of complex networks can be used to describe many
real systems [12, 13]. A tremendous amount of research
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works on transmission dynamics have been gained under the
framework of complex networks [14, 15]. Buono et al studied
a SIR disease transmission model in a partially overlapped
multiplex network consisting of two layers that share a frac-
tion q of nodes, and they found that vaccination or isolation of
only the layer with higher propagation capacity can greatly
reduce the total branching factor of the network [16]. Alvarez-
Zuzek et al studied disease transmission in multiplex net-
works by opinion exchanges on vaccination, which concludes
that the exchange of views among individuals had an impact
on the vaccination rate [17]. Sartori et al explored the effec-
tiveness of vaccination by comparing the vaccination strate-
gies of seven nodes in twelve real-world complex networks
[18]. Cremonini et al proposed a new agent group dynamic
model of network transmission to study the dynamics of
disease transmission [19]. Silva et al studied two rules of
disease transmission in heterogeneous networks, and the
results showed that strategies that improve the perception of
who is socially very active can improve the mitigation of
disease outbreaks [20]. Jin et al deeply discussed the
dynamics of the disease transmission process in a physical
contact network and proposed a cascade fault model with load
distribution parameters and a disease SIR model [21].

Individual awareness influences individual behavior
[22, 23]. In real life, once people realize the potential threat of
disease, they will take effective measures to prevent infection in
time, such as wearing masks, vaccination, etc. The awareness is
reflected in the contact behavior that would change the con-
nection patterns [24, 25]. Therefore, scholars have begun to
study the transmission dynamics of information and disease on
multiple networks [26]. For example, Funk et al introduced the
effect of disease-relevant awareness in the research of disease
transmission, which indicates that disease-relevant awareness
was able to moderate the scale of the infectious disease [27].
Granell et al analyzed a coupled dynamical process of aware-
ness and disease on the top of multiplex networks and found
that the critical threshold of disease transmission was deter-
mined by the dynamics of awareness and the topology of the
virtual networks [28]. Chen et al introduced the inter-layer
mutual recognition mechanism into the dynamics of informa-
tion disease interaction on multiple networks. The research
results show that individuals clearly disclosing their infection
and awareness status to neighbors, especially those who have
real contacts, is helpful in suppressing disease spread [29]. Silva
et al proposed a mathematical model of the transmission of
diseases related to awareness in a complex network and verified
that the velocity characterizing the diffusion of awareness
greatly influences the disease prevalence [30]. Wang et al used
real data to investigate the coevolutionary mechanism and
dynamics between information diffusion and disease transmis-
sion in multiple networks, which proves that there was asym-
metric interaction between information diffusion and disease
transmission dynamics [31]. Pan et al investigated the coupled
awareness-disease dynamics in multiplex networks considering
individual heterogeneity, indicating that local and global
information can only reduce the prevalence of disease [32].

Different individuals have different levels of activity,
which will affect individual behavior. In previous studies, the
level of individual activity was considered as the degree of
contact between individuals in the process of disease trans-
mission. Due to the heterogeneity of individuals, each indivi-
dual in the network will have two states (active or inactive).
Active individuals are infected with a certain probability by
contacting infected neighbors; inactive individuals will not
contact other individuals because of their self-protection status,
and will not participate in the process of disease transmission -
aprocess known as the interaction between individuals. Kotnis
et al investigated the impact of individual activity on disease
transmission and proved that only controlling the activity level
of infected individuals can effectively inhibit the transmission
of the disease [33]. Rizzo et al proposed an activity-driven
model of dynamical networks to study the factors influencing
disease transmission [34]. Based on the SIR (Susceptible-
Infected-Removed) model, Liu et al investigated the impact of
individual activity on transmission dynamics of complex net-
works, and the results showed that the critical threshold of
disease transmission was increased by node activity [35]. Fan
et al studied the two interacting processes of information
awareness and disease transmission on the same individual
who has a different behavior status on the multiplex networks,
which indicates that individual activity had a significant impact
on the threshold of disease transmission [36].

However, the level of activity is not a fixed characteristic of
individuals and will change with the change in environment.
Therefore, individuals have different levels of activity in the
information transmission layer and the disease transmission
layer. For example, some people are active in the virtual world
and like to release information online, but they are not active in
the real world; some older people are just more active in real life,
but they do not often surf the Internet. Therefore, it is worth-
while to study the impact of individual asymmetric activities on
the dynamic transmission process of disease in multiple net-
works. Different from previous studies on the impact of indi-
vidual activity on the transmission of disease, in this paper,
asymmetric activity is introduced into the classical –UAU SIS
(Unaware-Aware-Unaware-Susceptible-Infected-Susceptible)
model. In the information diffusion layer, during each time step,
an active individual interacts with all their neighbors, while an
inactive individual can only interact with their active neighbors.
However, at the disease transmission level, an individual is at
risk of becoming infected once he or she contacts an infected
neighbor, whether he or she is active or not. Then, the critical
threshold for disease transmission of the coupled model is cal-
culated by using the micro-Markov chain method. Finally, the
theoretical results are verified by numerical simulations.

The remaining sections of this paper are organized as
follows. Firstly, the model-related assumptions are introduced
in detail. In addition, the micro-Markov chain method is used
to analyze the model and drive the analytical expression of the
disease threshold in section 3. Secondly, in section 4, num-
erical simulations are performed to validate theoretical pre-
dictions. Finally, we conclude the paper and perform some
outlooks in section 5.
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2. The model-related assumptions

Previous scholars have proposed that individuals have the
same level of activity in multiplex networks [36]. In fact, an
individual’s personality and living environment will lead to
different levels of activity in different environments. Here, a
novel model considering asymmetric activity is proposed
based on the –UAU SIS model proposed by Granell et al [28].
In order to better describe the model, we give the following
assumptions:

Assumption 1. Network structure assumption. As shown in
figure 1, our model is implemented on a multiplex network.
To illustrate it, we construct a two-layer network, which is
used to describe the diffusion of disease-related information
on the social networks layer and the transmission of diseases
in the physical contact layer, respectively. For simplicity, we
assume that the multiplex network is unweighted and
undirected. The relationship between the two layers is a
coupling dynamic process of disease transmission and
information diffusion. A virtual connection between two-
layer networks means that the mapping relationship of node
pairs, and the individuals in the two-layer networks are
represented by circles. The upper layer stands for the disease-
related information diffusion on social networks (e.g.,
Twitter, Facebook and WeChat) denoted by the UAU
(unaware-aware-unaware) layer. The nodes are divided into
two states: unaware (U) and (A) aware. State U indicates that
the individuals are not aware of disease-related information;
state A indicates that individuals are aware of the disease-
related information. It is worth noting that, on the one hand,
individuals who are not aware of the existence of the disease
will not take any measures to avoid being infected by the
disease; on the other hand, individuals who are aware
of the existence of the disease will diffuse disease-related

information to their neighbors and take measures to avoid
being infected by the disease. Among them, if an unaware
individual contacts an aware neighbor, he or she will acquire
the disease-related information with a probability l. Further-
more, an aware individual will forget the disease-related
information with the probability d.

The mechanisms of disease transmission and information
diffusion are similar but are not identical completely. Indi-
viduals have subjective initiative. In the process of disease
transmission, even if individuals take various preventive
measures and are unwilling to be infected by the disease, it is
still accompanied by the risk of being infected by the disease.
In the diffusion of information, different types of edges not
only have different diffusion power but also have different
diffusion modes, the contact intensity in disease transmission
will only cause the difference in transmission probability. The
lower layer denotes the transmission of disease in the physical
contact network (such as the mutual contact relationship in
daily life) by using the classical SIS (susceptible-infected-
susceptible) model. The nodes are divided into two states:
susceptible and infected. Susceptible individuals (S) represent
healthy individuals, which may be infected by neighbor
individuals. Infected individuals (I) denote individuals who
have been infected and will infect their neighbors. Among
them, a susceptible individual would transmit an infection
through one contact with an infected neighbor at the basic rate
b; meanwhile, an infected individual will spontaneously
recover with the probability m. In addition, if individuals
know disease-related information and take effective pre-
ventive measures in time, the probability of infection will be
reduced. Therefore, f is represented as an information
reduction factor. We use bA and bU to represent the infection
rate of individuals who are aware of disease information and
unaware of disease information, respectively, and we
have b fb fb= = .A U

Assumption 2. Assumption of individual disease infection
rate. In particular, the mapping pattern between the corresp-
onding nodes in the two-layer network is one-to-one, that is,
an individual is assumed to appear in the social network and
the physical contact network at the same time. As proposed in
[37, 38], in the layer of disease transmission, the disease
infection rate depends on the ‘susceptibility’ of susceptible
individuals and the ‘transmission ability’ of infected indivi-
duals, which can be defined as:

⎧

⎨
⎩

( )=M

E T

T E

, i is susceptible and j is infectious;

, i is infectious and j is susceptible;

0, otherwise.

1ij

i j

i j

Mij represents the true probability of an individual being
infected by the disease. As shown in the above equation (1), it
mainly consists of two parts. Ei refers to the susceptibility of
susceptible individuals (S), which indicates the probability
that susceptible individual i will be infected through one
contact with an infected individual. In this paper, individual
susceptibility is mainly affected by the activity w of

Figure 1. Schematic diagram of the coupled –UAU SIS model
multiple networks. The upper layer is the virtual information layer,
where nodes have two possible states: aware (A) and unaware (U );
The lower layer network denotes the physical contact layer, where
nodes also have two possible states: susceptible (S) and infected (I ).
For the activity behavior of nodes, the orange and blue dots represent
the active and inactive status of nodes in the virtual information
layer, respectively. Meanwhile, the yellow and green dots denote the
active and inactive status of nodes in the physical contact layer,
respectively.
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individuals. The more active an individual is, the stronger his
susceptibility is, we give w=E ;i Ti refers to the transmission
ability of infected individuals (I ), which indicates the trans-
mission rate that the individual would transmit an infection
through one contact with a susceptible individual, we give

b=T .j Therefore, based on assumption 1, the true probability
of being infected by the disease after an individual contacts an
infected neighbor is wb=M .j In real life, when individuals
know the disease-related information, they will take a series
of preventive measures, so the probability of being infected
by the disease will be lower. Therefore, the real probability of
infection of individuals in state A is obtained as wbA, and the
real probability of infection of individuals in stateU is obtained
as wbU , where b fb= ,A U f is the infection reduction factor
when a susceptible individual is aware of the disease. When
individuals are aware of disease-related information, they will
take appropriate measures to prevent disease.

Assumption 3. Assumption of asymmetric activity. Here,
heterogeneous activity is used to describe the activity of
individuals. Inactive individuals do not take the initiative to
contact and generate connection edges in the network, and
most of them wait for active nodes to activate and generate
connection edges to connect to them. The individual in the
proposed model will be involved in the diffusion of
information and the transmission of diseases. Individuals
have different levels of activity in different environments. The
activity of the information transmission layer refers to
whether individuals actively diffuse disease-related informa-
tion; during each time step, an active individual interacts with
all its neighbors, while an inactive node can only be interacted
with by its active neighbors. The activity of the disease
transmission layer denotes some behavioral characteristics of
individuals (for example running around during the disease
and going out without masks). Individuals, whether active or
not, are at risk of becoming infected once they contact with
infected neighbors.

Assumption 4. Assumption of key parameters of the model.
In order to introduce the proposed model more clearly, we
first make assumptions about the definition of key quantities
or parameters in the model in table 1.

3. The analytical results based on mean-field method

It is well known that infectious disease thresholds are
important parameters for preventing and controlling the
spread of disease. In this section, we conduct a theoretical
analysis of our model to derive the critical threshold of dis-
ease transmission by using the mean-field method.

There exists four possible states for any node pair in the
current model, which include unaware susceptible (US),
unaware infected (UI ), aware susceptible (AS), and aware
infected (AI ). Generally, it is assumed that an infected indi-
vidual is certainly aware of the disease and thus theUI state is
nonexistent. And twelve sub-states:U S ,m a U S ,m d A S ,m a A S ,m d

A I ,m a A I ,m d U S ,n a U S ,n d A S ,n a A S ,n d A I ,n a A I ,n d the super-
script sign m and n represent the active and inactive states of
individuals in the upper layer network, respectively. Simi-
larly, superscript a and d denote the active state and inactive
state of individuals in the lower layer network, respectively.
In addition, any one of the 12 sub-states can be transformed
into other possible ones with a certain probability, and the
corresponding state transition is shown in figures 2 and 3.

Then, the reaction process of the multiplex networks
model can be schematically represented by:

(1) Behavior state change in the upper layer network

⟶a a¾ ¾-U U U U1 , ;m n n m

⟶a a¾ ¾-A A A A1 , .m n n m

(2) Behavior state change in the lower layer network

⟶w w¾ ¾-S S S S1 , ;a d d a

⟶w w¾ ¾-I I I I1 , .a d d a

(3) Active spreading in the upper layer network

⟶ ⟶l l+ + + +U S AS A S AS U S AI A S AI, .m m m m

Table 1. Definition of some key quantities or parameters in the proposed disease model.

Symbol Definition

l The probability that unaware individuals can communicate with aware individuals to obtain information.
d The probability that an aware individual forgets information
b The probability that the susceptible individual would transmit an infection through one contact with an infected neighbor.
m The probability that an infected individual recovering to a susceptible state
a The activity level of individuals in the information diffusion layer
w The activity level of individuals in the disease transmission layer
bU The probability that an unaware susceptible individual is infected by one of his infected neighbors
bA The probability that an aware susceptible individual is infected by one of his infected neighbors
f Infection reduction factor when a susceptible individual is aware of the disease.
ri The probability that an individual will not be informed
qi

U The probability that an individual who is not aware of the existence of the disease information will not be infected

qi
A The probability that an individual who is aware of the existence of the disease information will be infected
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(4) Inactive spreading in the upper layer network

⟶ ⟶l l+ + + +U S A S A S A S U S A I A S A I, .n m n m n m n m

(5) Active spreading in the lower layer network

⟶ ⟶

⟶

b

b
+ +

+ + +

US AI UI AI AI

AI AS AI AI AI

1

, .

m
u

m m

m
A

m

(6) Inactive spreading in the lower layer network

⟶
wb

wb
+ ¾ + +

+ ¾ +

US AI UI AI AI AI

AS AI AI AI

1 ,

.

n m
u

n m n m

n m
A

n m

(7) Recoveries

⟶ ⟶d m
AS US AI AS, .

On the information diffusion layer, ri is represented as the
total probability that node i is not informed, consisting of two
parts, where ri

m is the probability that an active node i is not
informed at time step t and ri

n is denoted as the probability
that an inactive node i is not informed at time step t. On the
disease transmission layer, qi

U is denoted as the total prob-
ability that the unaware-state node i is not infected by con-
tacting neighbors, which is composed of two parts, the first
part is q ,i

U m, indicating the probability that the active node is
not infected; the second part is q ,i

U n, indicating the probability
that the inactive node is not infected. Similarly, we can
deduce that qi

A also consists of two parts qi
A m, and q .i

A n, Based

on the above, we have ( )a a= + -r r r1 ,i i
m

i
n =qi

A

( )w w+ -q q1i
A a

i
A d, , and ( )w w= + -q q q1 .i

U
i
U a

i
U d, ,

Considering the different activities of individuals in the
upper and lower levels, We have q ,i

A m a, , q ,i
A m d, , q ,i

U m a, , q ,i
U m d, ,

q ,i
A n a, , q ,i

U n a, , q ,i
A n a, , , q ,i

A n d, , q .i
U n d, , According to the above

definitions, one can construct these probability trees of state in
the proposed model as shown in figures 2 and 3.

In order to give a mean-field analysis, all nodes in the
multiplexing network need to be divided into different cate-
gories according to the degree of nodes. ( )N k l, represents the
number of nodes with degree k in the information diffusion
layer and degree l in the disease transmission layer. The
number of the three primary states at time t is represented as

( )US k l t, , , ( )AS k l t, , , ( )AI k l t, , , and ( )r k l t, , ,US

( )r k l t, ,AS ( )r k l t, ,AI denotes the corresponding density,

respectively. For example, ( ) ( )
( )

r =k l t
US k l t

N k l
, ,

, ,

,
.US Further-

more, condition ( ) ( ) ( )r r r+ + =k l t k l t k l t, , , , , , 1US AS AI

must be satisfied for each node i.
Given that node i has ( )g g k aware neighbors and

( )h h l infected neighbors at time t. The probability of node
i to stay in the unaware state is ( )l- Dt1 ;g the probability of
node i to stay in the aware susceptible state is ( )wb- Dt1 ;A h

the probability of node i to stay in the unaware susceptible
state is ( )wb- Dt1 .U h Then, the probabilities of node i has

( )g g k aware neighbors and ( )h h l infected neighbors at

time t are:

( ) ( ) [ ( )] ( )q q= - -N g h t C k l t k l t, , , , 1 , , , 2i
A

k
g g k g

1 1

( ) ( ) [ ( )] ( )q q= - -N g h t C k l t k l t, , , , 1 , , , 3i
I

l
h h l h

2 2

where ( ) ( ∣ )[ ( ) ( )]åq r r=
¢

¢ ¢ + ¢k l t
k

P k k k l t k l t, , , , , ,AS AI
1

denotes the approximate probability that a given link of node i
with degree ( )k l, is connected to an aware neighbor,

( ) ( ∣ )[ ( )]åq r=
¢

¢ ¢k l t
k

P l l k l t, , , ,AI
2 represents the approx-

imate probability of a given link of node i with degree ( )k l, to
be connected to an infected neighbor at time t. ( ∣ )¢P k k and

( ∣ )¢P l l are the degree–degree correlations function of each
layer in the multiplex networks.

The propagation probability of active nodes in the
information diffusion layer is shown in figure 2. The fol-
lowing probability values are given:

( ) ( ) [ ( )] ( )å l q q= - D -
=

-r C t k l t k l t1 , , 1 , , , 4i
m

g

k

k
g g g k g

0
1 1

( ) ( ) ( ( ))

( )

å b q q= - D -
=

-q C t k l t k l t1 , , 1 , , ,

5

i
A m a

h

l

l
h A h h l h, ,

0
2 2

( ) [ ( )] [ ( )]
( )

å wb wq wq= - D -
=

-

q

C t k l t k l t1 , , 1 , , ,

6

i
A m d

h

l

l
h A h h l h

, ,

0
2 2

( ) ( ) [ ( )]

( )

å b q q= - D -
=

-q C t k l t k l t1 , , 1 , , ,

7

i
U m a

h

l

l
h U h h l h, ,

0
2 2

( )

[ ( )] [ ( )] ( )

å wb

wq wq

= - D

´ -
=

-

q C t

k l t k l t

1

, , 1 , , . 8

i
U m d

h

l

l
h U h

h l h

, ,

0

2 2

The propagation probability of inactive nodes in the
disease transmission layer is shown in figure 3. The following
probability values are given:

( ) [ ( )] [ ( )]

( )

å l aq aq= - D -
=

-r C t k l t k l t1 , , 1 , , ,

9

i
n

g

k

k
g g g k g

0
1 1

( )

[ ( )] [ ( )] ( )

å b

aq q

= - D

´ -
=

-

q C t

k l t k l t

1

, , 1 , , , 10

i
A n a

h

l

l
h A h

h l h

, ,

0

2 2

( ) [ ( )]

[ ( )] ( )

å wb awq

awq

= - D

´ -
=

-

q

C t k l t

k l t

1 , ,

1 , , , 11

i
A n d

h

l

l
h A h h

l h

, ,

0
2

2
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( ) [ ( )]

[ ( )] ( )

å b aq

aq

= - D

´ -
=

-

q

C t k l t

k l t

1 , ,

1 , , , 12

i
U n a

h

l

l
h U h h

l h

, ,

0
2

2

( ) [ ( )]

[ ( )] ( )

å wb awq

awq

= - D

´ -
=

-

q

C t k l t

k l t

1 , ,

1 , , . 13

i
U n d

h

l

l
h U h h

l h

, ,

0
2

2

From equations (4) and (9). We can get the probabilities
for node i not informed denoted by ri

( ) ( )
( )( ) ( )
a a a lq

a alq
= + - = - D

+ - - D

r r r t

t

1 1

1 1 . 14
i i

m
i
n k

k

1

1

By adding the activity of nodes i in the information
diffusion layer and disease transmission layer, we can get the
probabilities for node i not infected with an aware susceptible
state denoted by q :i

A

( )
( ) ( )( ) ( )

a a

a q b a aq b

= + -

= - D + - - D

q q q

t t

1

1 1 1 , 15
i
A a

i
A m a

i
A n a

A l A l

, , , , ,

2 2

( )

( ) ( )( )
( )

a a

a w q b a aw q b

= + -

= - D + - - D

q q q

t t

1

1 1 1 ,

16

i
A d

i
A m d

i
A n d

A l A l

, , , , ,

2
2

2
2

( )
( ) ( )( )

( ) ( )
( )( )( ) ( )

w w

wa q b w a aq b
w a w q b

a w w q b

= + -

= - D + - - D
+ - - D

+ - - - D

q q q

t t

t

t

1

1 1 1

1 1

1 1 1 . 17

i
A

i
A a

i
A d

A l A l

A l

A l

, ,

2 2

2
2

2
2

By adding the activity of node i in the information dif-
fusion layer and disease transmission layer, we can get the
probabilities for node i not infected with an unaware sus-
ceptible state denoted by q :i

U

( )
( ) ( )( ) ( )

a a

a q b a aq b

= + -

= - D + - - D

q q q

t t

1

1 1 1 , 18
i
U a

i
U m a

i
U n a

U l U l

, , , , ,

2 2

( )

( ) ( )( )
( )

a a

a w q b a aw q b

= + -

= - D + - - D

q q q

t t

1

1 1 1 ,

19

i
U d

i
U m d

U l U l

, , ,

2
2

2
2

( )
( ) ( )( )

( ) ( )
( )( )( ) ( )

w w

wa q b w a aq b
w a w q b

a w w q b

= + -
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Figure 2. Transition probability trees for three active states in the information diffusion layer per time step. (a) represents the state probability
tree of nodes that are active in the disease transmission layer; (b) denotes the state probability tree of nodes that are inactive in the disease
transmission layer. Nodes that are active in the information diffusion layer and active in the disease transmission layer aware of disease will
not be infected with probability q ;i

A m a, , nodes that are active in the information diffusion layer and inactive in the disease transmission layer

aware of disease will not be infected with probability q ;i
A m d, , nodes that are active in the information diffusion layer and active in the disease

transmission layer unaware of disease will not be infected with probability q ;i
U m a, , nodes that are active in the information diffusion layer and

inactive in the disease transmission layer unaware of disease will not be infected with probability q .i
U m d, , ri

m is used to denote the probability
that nodes that are active in the information diffusion layer will not be informed by any neighbors who are aware of the disease. d is the
probability that nodes are aware of the information of disease but may forget, and m is the probability that infectious individuals may recover.

6

Commun. Theor. Phys. 75 (2023) 075001 X Xie et al



Consequently, the transition probabilities r ,i qi
A and qi

U of
the three primary states are obtained. Then, at time + Dt t,
the number change rates of the three primary states are
denoted as

( ) ( ) ( )( )
( )( ) ( )
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- - + D
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From equations (14), (17) and (20). Omitting the higher-
order infinitesimal, we can obtain

( ) ( )a a l q- = - Dr k t1 2 , 24i
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25
i
A A2 2

2
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26
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From equations (21)–(23) and condition ( )r +k l t, ,US

( ) ( )r r+ =k l t k l t, , , , 1,AS AI when D t 0, we can get

Then, order that ( ) =r¶ 0,k l t

dt

, ,US ( ) =r¶ 0,k l t

dt

, ,AS

( ) =r¶ 0,k l t

dt
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the steady state equation of equation (27) can
be obtained:
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With the equation wb fwb= ,A U we can get the disease
threshold bc as
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Similarly, the threshold lc of information diffusion can
be obtained (a detailed derivation is provided in appendix A):

· ( )l y=
á ñ
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k

k
, 31c 2

y is an expression that contains related parameters (a, w
and f, etc). Since the results of the information diffusion
threshold obtained through calculation are tedious, we use y
to simplify the expression. In addition, we can also obtain the
threshold of node activity in the information diffusion layer
and the disease transmission layer.
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It can be seen from equation (30) that the transmission
threshold of the disease is affected by the information layer

parameters ( )q ¥k l, ,1 and f. If ·l l y< = á ñ
á ñ

,c
k

k2 when the

information layer is stable, there is no individual with information
( ( )q ¥ =k l, , 01 ) or the information obtained by the individual
is wrong (f = 0), the transmission threshold of the disease

( )·
( )( )

b¢ =
a a w w w- + -

á ñ
á ñc

l

l

1

2 2 2 3 2 can be obtained. Two special

cases are obtained: (1) when w = 1 and a = 1, that is, the
activity of the individual in the upper and lower layers is 1, the
threshold is b¢ = á ñ

á ñ
,c

l

l2 the same results as the pioneer works of

Wu et al [39]; (2) when w = 1, the threshold is

·
( )

b¢ =
a a-

á ñ
á ñ

,c
l

l

1

2 2 2 which is the same as Fan’s conclusion [36].

4. The numerical simulations

The analytical solution of the outbreak threshold is obtained
by using the micro-Markov chain method in section 2. In this
section, numerous Monte Carlo simulation experiments are
carried out to verify the theoretical prediction in section 2. For
all experiments, the number of nodes in the two-layered
multiplex network is 5000, and all results run 50 times on
average. It is assumed that in the initial network, the pro-
portion of nodes in the aware state and in the infected state are

0.5 and 0.5, respectively. Here, we investigate the effects of
three main parameters in the model: a (the activity level of an
individual in the information diffusion layer), w (the activity
level of an individual in the disease transmission layer), and f
(the infection reduction factor when a susceptible individual
is aware of the disease). In this section, we will further verify
the correctness of the proposed theory through numerical
simulation. The scale-free network generation algorithm is
used to construct two-layered multiplex networks.

From equation (31), we can see that the activity of nodes in
the information diffusion layer has a certain impact on the
threshold of disease transmission. First, we investigate the impact
of different activity levels a of nodes in the information layer on
disease transmission and disease threshold in figure 4. The effects
of l on the transmission threshold of disease can be classified
into two categories. One is the dotted line that represents the
threshold b ;c and the other is the solid line that denotes the
threshold b ¢,c which is predicted by the model. In this case,
compared with figures 4(a), (b) and (c), increasing node activity
in the information diffusion layer can suppress the transmission
of disease, but there is still no obvious effect. In addition, the
threshold of disease transmission decreases slightly. This evolu-
tionary trend coincides with the reality that when individuals are
aware of more disease-related information, the awareness of
disease prevention will be higher. However, the diffuse of
information is not the root of controlling the spread of disease, so

Figure 3. Transition probability trees for three inactive states in the information diffusion layer per time step. (c) represents the state
probability tree of nodes that are active in the disease transmission layer; (d) denotes the state probability tree of nodes that are inactive in the
disease transmission layer. Nodes that are inactive in the information diffusion layer and active in the disease transmission layer aware of
disease will not be infected with probability q ;i

A n a, , nodes that are active in the information diffusion layer and inactive in the disease

transmission layer aware of disease will not be infected with probability q ;i
A n d, , nodes that are inactive in the information diffusion layer and

inactive in the disease transmission layer unaware of disease will not be infected with probability q ;i
U n a, , nodes that are inactive in the

information diffusion layer and inactive in the disease transmission layer unaware of disease will not be infected with probability q .i
U n d, , ri

n is
used to denote the probability that nodes that are inactive in the information diffusion layer will not be informed by any neighbors who are
aware of the disease.
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individual activity has little effect on the spread of disease. As we
can see from the sub-graph of figure 4, the activity of nodes in
the information diffusion layer remains unchanged, when the

information diffusion rate ·l l y< =
á ñ
á ñ

k

k
,c 2
the transmission

threshold
( )( )

·b
a a w w w

¢ =
- + -

á ñ
á ñ

l

l

1

2c 2 2 3 2
of the sys-

tem is depicted by the solid line in figure 4; when the information

diffusion rate ·l l y> =
á ñ
á ñ

k

k
,c 2
disease-related information is

transmitting in the system and thus ( )q ¥ ¹k l, , 0.1 Nodes who

are aware of disease-related information may take relevant
measures to prevent disease in advance, and it will decrease the
disease transmission rate to b fb= ,A U the critical threshold
will deviate significantly. Figure 5 depicts the impact of indi-
vidual behavior parameter a in the information transmission
layer on disease transmission. We magnify this part of [0.3,
0.5] in figure 5 from the sub-graph, and find that the activity a
of nodes in the information transmission layer can affect the
transmission of disease, but the effect is very small. In addition,
in the proposed model, node activity in the information dif-
fusion layer can also affect the threshold of disease transmis-
sion, but the effect is not significant.

Next, we explore the impact of individual activity w in
the disease transmission layer on disease transmission, and
related results are shown in figures 6 and 7.

From equation (31), we can see that the activity of nodes in
the disease transmission layer has a certain impact on the
threshold of disease transmission. Secondly, figures 6 and 7
depict the effect of different activity levels of nodes on disease
transmission, as well as disease thresholds in the disease trans-
mission layer. In figure 6, We carry out a heat map of the final
scale of the disease under different activity levels w and different
information diffusion probabilities b of the node, which exhibits
obvious critical phenomenon. Consistent with figure 4, the effect
l has on the transmission threshold of disease can be classified
into two categories, of which one is the dotted line that represents
the threshold bc and the other is the solid line that denotes the
threshold b ¢,c which is predicted by the model. In figure 6, the
final size of the disease transmission is indicated by the color
depth. The darker the color, the easier the disease transmission,
and the lighter the color, the harder the disease transmission. In

Figure 4. Stationary state and critical threshold of the disease with different transmission rate l, b. Activity level a in the information
diffusion layer is set as follows: (a) a = 0.3, (b) a = 0.6, (c) a = 0.9, from left to right. Color maps represent the prevalence of the disease.
The dotted line represents the threshold b ,c and the solid line represents the threshold b ¢c predicted by the model. Each point in grid 40 * 40 in
the figure is obtained through an average of 50 numerical simulations. Dynamical parameters: information forgetting rate s = 0.4, disease
recovery rate m = 0.6, infection reduction factor f = 0.5, active level of nodes in the disease transmission layer w = 0.4.

Figure 5. rAI as a function of the disease transmission rate b under
different activity level a in the information diffusion layer.
Dynamical parameters: information layer spreading ratel = 0.4 and
information forgetting rate s = 0.4, disease recovery rate m = 0.6,
infection reduction factor f = 0.5, active level of nodes in the
disease transmission layer w = 0.4.
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this case, compared with figures 6(a), (b) and (c), the increase in
the activity level of individuals will promote the transmission size
of the disease, and the threshold of the disease transmission will
be decreased, which has a great impact on the transmission size
of the disease. Figure 7 shows the effect of individual activity
level w on disease transmission in the disease transmission layer.
We can see that the final size of rAI and the threshold of disease
transmission are significantly affected by the activity level of
individuals in the disease transmission layer. In fact, reducing
people’s activity level in the physical contact layer is an effective
means to control the spread of disease.

In figure 8, we consider that the difference in the effect of
w and a on disease transmission. We may obtain the con-
clusion that w has a greater impact on disease transmission
than a during disease outbreaks. This is consistent with the
results of our previous research, which proves the effective-
ness of the model and simulation. Therefore, in the face of
disease outbreaks, the government should focus on limiting
personal behavior (such as wearing masks when going out,
keeping a distance when eating in the store, etc).

Figure 9 describes the heat map of the final scale of the
disease under different infection reduction factor f and

Figure 6. Stationary state and critical threshold of the disease with different spreading rate l, b. Activity level w in the disease transmission
layer is set as follows: (a) w = 0.3, (b) w = 0.6, (c) w = 0.9, from left to right. Color maps represent the prevalence of the disease. The
dotted line represents the threshold b ,c and the solid line represents the threshold b ¢c predicted by the model. Each point in grid 40 * 40 in the
figure is obtained through an average of 50 numerical simulations. Dynamical parameters: information forgetting rate s = 0.4, disease
recovery rate m = 0.6, infection reduction factor f = 0.5, active level of nodes in the information diffusion layer a = 0.4.

Figure 7. rAI as a function of the disease transmission rate b under
activity level w in the disease transmission layer. Dynamical
parameters: information diffusion rate l = 0.4 and information
forgetting rate s = 0.4, disease recovery rate m = 0.6, infection
reduction factor f = 0.5, active level of nodes in the information
diffusion layer a = 0.4.

Figure 8. The heat map under the joint action of individual behavior
rate a of the information diffusion layer and individual behavior rate
w of the disease transmission layer. The remaining parameters are set
to be: information diffusion rate l = 0.4 and information forgetting
rate s = 0.4.
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disease transmission rate b. We find that when the disease
transmission rate b remains unchanged, the higher the value
f, the more prevalent the disease.

In figure 10, we consider the final size of spreading
dynamics rAI in case of different combinations of disease
transmission rate b and infection reduction factor f. There is no
doubt that the greater the value of f, the less an individual is
aware of the disease-related information. Therefore, the indivi-
dual behavior of disease prevention will be decreased, the
smaller the threshold of disease transmission, and the easier the
disease transmits. This conclusion is consistent with that in
figure 9, which verifies the correctness of our experiment.
During disease (for carrier-dependent infectious diseases, like
cholera, diarrhea, etc) outbreak [40, 41], the government can
increase the publicity of disease-related information, which will
improve the individual’s awareness of the disease and then
strengthen the disease prevention measures.

5. Conclusion

In this paper, the improved –UAU SIS model with asymmetric
activity of individuals on a multiplex network is established, the
upper network represents the diffusion of disease-related infor-
mation, and the lower network denotes the transmission of
disease. Then the system dynamics equations and the critical
threshold of the model are determined by using the micro-
Markov Chain method. Finally, the correctness of the theoretical
analysis is verified by numerical simulation. It is concluded that
the asymmetric activity of individuals in the information trans-
mission layer and disease transmission layer has different effects
on disease transmission. The activity of individuals in the phy-
sical contact layer greatly affects the scale and threshold of
disease transmission, but the role in the virtual information layer
is not obvious. Therefore, during the outbreak of disease, on the
one hand, the government should restrict individual behavior
(such as wearing masks when going out; restricting or stopping
fairs, theater performances, or other crowd gathering activities,
etc); on the other hand, since individual awareness will affect
individual behavior, the government should positively carry out
online education activities to expand people’s acquaintance with
disease-related knowledge.
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Figure 9. The heat map shows the impact f (infection reduction
factor when a susceptible individual is aware of the disease) on
disease transmission. The remaining parameters are set to be:
information diffusion rate l = 0.4 and information forgetting rate
s = 0.4, disease recovery rate m = 0.6, activity level on the
information diffusion layer a = 0.3, activity level on the disease
transmission layer w = 0.3.

Figure 10. The final size of spreading dynamics rAI with different
disease transmission rate b and infection reduction factor f. The
remaining parameters are set to be: information diffusion rate
l = 0.4 and information forgetting rate s = 0.4, disease recovery
rate m = 0.6.
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Appendix A
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At time + Dt t, the number change rates of the three primary states are denoted as:
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From equation (A.1), (A.2) and (A.3). Omitting the higher-order infinitesimal, we can obtain:
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Considering that equation ( ) ( ) ( ) ( ( )åq r q¥ =
á ñ

¥ = ¥k l
k

P k k l f k l, ,
1

, , , ,
k

A
1 1 and ( ( )q ¥f k l, ,1 is strictly mono-

tonically increasing functions, the existence condition of non-zero solutions of ( )q ¥k l, ,1 is ( ( ))∣ ( )
q

q ¥ >q ¥ =f k l
d

d
, , 1k l

1
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Then, we can obtain:
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Then, we can get the disease threshold lc as:
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In order to simplify this result, we make:
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Finally, we get:
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