
Analysis of the seventh-order Caputo
fractional KdV equation: applications to the
Sawada–Kotera–Ito and Lax equations

Shabir Ahmad and Sayed Saifullah

Department of Mathematics, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa,
Pakistan

E-mail: shabirahmad2232@gmail.com

Received 17 January 2023, revised 15 June 2023
Accepted for publication 16 June 2023
Published 20 July 2023

Abstract
In this study, we investigate the seventh-order nonlinear Caputo time-fractional KdV equation.
The suggested model’s solutions, which have a series form, are obtained using the hybrid ZZ-
transform under the aforementioned fractional operator. The proposed approach combines the
homotopy perturbation method (HPM) and the ZZ-transform. We consider two specific
examples with suitable initial conditions and find the series solution to test their applicability. To
demonstrate the utility of the presented technique, we explore its applications to the fractional
Sawada–Kotera–Ito problem and the Lax equation. We observe the impact of a few fractional
orders on the wave solution evolution for the problems under consideration. We provide the
efficiency and reliability of the ZZHPM by calculating the absolute error between the series
solution and the exact solution of both the Sawada–Kotera–Ito and Lax equations. The
convergence and uniqueness of the solution are portrayed via fixed-point theory.

Keywords: seventh-order KdV equation, soliton, homotopy perturbation method
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1. Introduction

Nonlinear evolution equations play a key role in many sci-
entific and technical disciplines and are frequently employed
as models to explain complex physical behavior. Specifically,
the Korteweg–de Vries (KdV) equation has been widely used
in fluid mechanics problems. There is a large family of KdV
equations, which is extensively covered in the literature.
Many extended and modified versions of the basic KdV
equation have been formulated in the literature. The basic
nonlinear KdV equation [1] is given by,
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where Ψ is the function of two variables x and t. There is an
infinite number of constant-time motion integrals in the KdV
equation. They can be clearly stated as,
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where the polynomials are recursively expressed as,
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In the literature, researchers have defined modified and
extended versions of the KdV equation with regard to the
order. The expression for the most popular fifth-order KdV
equation [1] is,
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where a, b and c represent real constants. The readers are
directed to access [1] for further information and the family of
the KdV equation. The generalized seventh-order KdV
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equation [1] is expressed as,
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The seventh-order KdV equation has been studied to find
various wave solutions by using different techniques. For
instance, Ganji and his co-author utilized the exp-function
procedure to derive the exact solution of the seventh-order
KdV equation [2]. Sayed and Kaya used Adomian decom-
position technique to analyze the seventh-order Sawada–
Kotera equation, which is a special case of the seventh-order
KdV equation [3].

Lie groups describe symmetries of geometric objects or
physical systems and have applications in mathematics and
physics, including differential geometry, topology and
quantum field theory. In this paper, Lie groups are relevant
because they describe the symmetries of physical systems,
such as the rotation of a rigid body in 3D space or the sym-
metries of a crystal lattice. Studying Lie groups can help
researchers understand the behavior of physical systems and
predict their behavior in various situations by examining
continuous symmetries. For more details, the reader is refer-
red to [4–6] .

At the intersection of applied mathematics and physics,
fractional calculus (FC) is a fast-expanding topic of study
[7, 8]. Numerous manuscripts have noted that modeling using
the FC notion is particularly suitable and trustworthy for
providing an exact explanation of memory and some scientific
features of different materials and events, which are entirely
absent in traditional or integer-order equations. Here, we
describe a few applications of FC in various disciplines of
science [9–11]. Saifullah et al investigated localized modes,
shock waves and wave amplitude of a Klein–Gordon equation
using fractional operators [12, 13]. Gulalai et al studied the
soliton dynamics of a fractional-order modified KdV equation
[14]. The third-order KdV equation has been studied via
different fractional operators by Aljahdaly et al [15]. There
are some more applications of FC in other fields of science
[16–18].

Due to enormous nonlinear problems in FC, the
researchers have given significant attention to the solutions of
highly nonlinear models. In the literature, several analytical
and numerical techniques have been devised to solve the
problems of FC. For instance, modified double Laplace and
natural transform methods have been implemented on a
fractional-order Kawahara equation to extract series solutions
[19]. A homotopy perturbation method (HPM) coupled with
the Yang transform has been used to solve Caputo and
Caputo–Fabrizio fractional partial differential equations
(PDEs) [20, 21]. Ghandi et al used a Lie symmetry approach
to investigate fractional KdV equations [22]. In [23], some
new implication of integral transforms to the financial models
with different fractional derivatives are presented. Further-
more, SARS CoV-2 with the Euler method is studied in [24].
The KdV equation is analyzed on critical flow over a hole
with three fractional operators in [25]. For more applications

of FC, please read [26–28]. Inspired by the above literature,
we consider the seventh-order general KdV equation [1] in
fractional Caputo sense as,
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where Ψ is a function of x and t.  , 1, 2, 3 ..., 7=ii ,
denoted real parameters.

The novelty of this work lies in the proposed hybrid
ZZ-transform approach for obtaining series solutions of
the seventh-order nonlinear Caputo time-fractional KdV
equation. The combination of the HPM and ZZ-transform is a
novel approach to solving fractional differential equations. In
addition, we explore the applicability of the presented tech-
nique to two specific problems, the fractional Sawad–Kotera–
Ito (SKI) problem and the Lax equation, and investigate the
impact of fractional orders on the wave solution evolution.
The efficiency and reliability of the proposed approach are
demonstrated through the absolute error analysis between the
series solution and the exact solution of both problems. In
addition, the convergence and uniqueness of the solution are
established using fixed-point theory.

2. Preliminaries

Here, we offer some fundamental definitions that will be
utilized acrossthe rest of the article.

Definition 2.1. Suppose K t a bH ,1Î( ) ( ), and r Î + , then
the Caputo operator is [29],
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Definition 2.2. Consider K t( ) is a function, which is defined
as t 0"  . Then, the  -transform of K t( ) is P ,n V( ) and is
given by [30],
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Definition 2.3. The  -transform of the mth integer-order
derivative of K t( ) is,
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Definition 2.4. The  -transform of the Caputo operator can
be defined as [30],
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where ς and ν are the variables of the  -transform.

3. General solution using ZZHPM

Here, we briefly discuss the suggested ZZHPM method. This
technique is the combination of the  -transform and HPM.
It is a very effective method to analyze the analytical solution
of various real-world problems. The ZZ-transform has several
advantages over numerical methods for solving differential
equations and analyzing signals. For instance, it can provide
exact solutions to differential equations, which is not always
possible with numerical methods. Numerical methods rely on
approximations and iterative calculations, which can intro-
duce errors and inaccuracies into the solution. ZZ-transform
provides analytical insight into the behavior of systems,
which can help engineers and scientists gain a deeper
understanding of the underlying physics and dynamics. Fur-
thermore, it is generally more robust than numerical methods
since it can handle a wide range of problems and system
configurations.

Herefirst we discuss the ZZHPM approach and then
apply it to two different models arising from equation (4). Let
us suppose the general non-linear fractional problem as,
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where 0< ρ� 1, t> 0, x Î + .  x t,C
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fractional operator of Ψ(x, t) in Caputo sense. U is the diff-
erential operator containing the linear terms, V is the diff-
erential operator containing the nonlinear terms and ϑ(x, t) is
an external function. The initial condition for equation (5) is
as follows:

x x, 0 . 6JY =( ) ( ) ( )

Using definition 2.4, we obtain the following:





x t x

x t x t x t

, , 0

, , , , 7

V
n

V
n

J

Y - Y

=- Y + Y +

r

r

r

r
[ ( )] ( )

[ [ ( )] [ ( )] ( )] ( )U V

and after simplification, we obtain,

 x t x x t

x t x t

, , 0 ,

, , . 8

n
V

J

Y = Y - Y

+ Y +

r

r
[ ( )] ( ) ( [ [ ( )]

[ ( )] ( )]) ( )

U

V

Using inverse  -transform and initial condition
equation (6), we obtain:
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where F(x, t) is a term resulting from the source terms and

initial condition. Furthermore, we use the perturbation
method and consider that the required solution might be
written in the terms of power series of p as,
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where Hv is He’s polynomial [31] of Ψ0, Ψ1, Ψ2, Ψ3, K,
which can be obtained using the following formula:
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Using equations (10) and (11), we can write equation (9) as,
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Comparing the terms on both sides of equation (13), we
achieve the required series solution as,
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where v Î + . One can continue in the same manner to
obtain the final general solution. Finally, the approximate
solution can be expressed as,

x t v x t, lim , . 15
v

v
0

åY = ¥ Y
=

¥

( ) ( ) ( )

For the convergence of the above series equation (15) we
refer to [31].

4. General series solution of the considered
equation with ZZHPM

In this section, we calculate the general series solution of the
seventh-order KdV with a fractional Caputo operator. Thus,
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we consider the seventh-order KdV in Caputo sense as,
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Applying  - transform to equation (16), we obtain,
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Using definition 2.4 in equation (18) and doing some sim-
plification, we obtain,
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Then, taking the inverse  - transform of equation (19), we
obtain,
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Next, we consider the solution in the following form:
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Then, we decompose the nonlinear terms using the He’s
polynomials as follows:
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Using equations (21) and (22) in equation (20), we obtain,
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Comparing the like powers of p, we obtain,





    

   

    

   

    

   

    

   

p x

p H I J

K L M N

p H I J

K L M N

p H I J

K L M N

p H I J

K L M N

: ,

:

,

:

,

:

,

:

. 24

x

x

x

v
v v v v

v v v v x

0
0

1
1

1
1 0 2 0 3 0

4 0 5 0 6 0 7 0 7

2
2

1
1 1 2 1 3 1

4 1 5 1 6 1 7 1 7

3
3

1
1 2 2 2 3 2

4 2 5 2 6 2 7 2 7

1
1 1 2 1 3 1

4 1 5 1 6 1 7 1 7

n
V

n
V

n
V

n
V

Y =

Y = - + +

+ + + + + Y

Y = - + +

+ + + + + Y

Y = - + +

+ + + + + Y

Y = - + +

+ + + + + Y

r

r

r

r

r

r

r

r

-

-

-

-
- - -

- - - -

⎡
⎣

⎡
⎣

⎡
⎣

⎡
⎣

( )

(

)]

(

)]

(

)]

(

)] ( )

We calculate first two terms for the He’s polynomials of each
of the nonlinear terms which are as follows:
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After inserting equations (25) into (24), one may achieve the
required series solution of the seventh-order KdV
equation (16).

5. Convergence and uniqueness of the solution

This section demonstrates the results concerned with the
uniqueness and convergence of the solution of the considered
equation, which is obtained through ZZHPM.

Theorem 5.1. The series solution obtained by ZZHPM is
unique if,
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Proof. The series solution of the considered equation is as
follows:
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In contrast, to prove that the obtained series solution is
unique, we take two solutions, such as Ψ and *Y , of the
suggested equation. Now, consider,
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and applying the integral mean value result, we
have,
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It follows that,

1 0, 29*v- Y - Y ( )∣ ∣ ( )

since 0, 1v Î ( ). Hence, equation (29) gives *Y = Y . Thus,
the solution obtained through ZZHPM is unique. ,

Theorem 5.2. Let Ξ be a Banach space and :P X  X be a
mapping so that,

   , , .* * *yP Y - P Y Y - Y " Y Y Î X( ) ( )

With the help of the Banach fixed-point result, it is established
that Π has a fixed point. Then, the series solution obtained by
ZZHPM converges to the fixed point of Π.

Proof. Let  T0, , .( ( ) )C denote the space of continuous
functions associated with the norm   tmaxt T0,Y = YÎ ∣ ( )∣[ ] .
Take a sequence rY{ }in Ξ and consider,
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Using the convolution property of the ZZ-transform, we have,
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Thus,    r f r f1 1vY - Y Y - Y- - . By putting r d 1,= +
we obtain,
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Since 0 1v< < ,  r fY - Y gives a finite value when
f  ¥. Hence, the considered sequence rY{ } is a Cauchy
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sequence in X. It follows that the sequence rY{ } is
convergent.

Theorem 5.3. Let x t,v v0å Y < ¥=
¥ ( ) and x t,v

g
v0å Y= ( ) be a

gth-order series solution of x t,Y( ). Let 0l > so that
   x t x t, ,v v1 lY Y+ ( ) ( ) , then the maximum absolute error
holds the inequality:
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, .
v

g

v

g

0

1

0å l
l

Y - Y <
-

Y
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Proof. Since x t,v v0å Y < ¥=
¥ ( ) , it follows that x t,v
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is finite. Consider,
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The proof is completed.

6. Application of HPZZM

Here, we present the application of the HPZZM. To do so, we
consider the seventh-order SKI equation in the first example,
then the seventh-order Lax equation in the second example. We
calculate the series solution of the considered models and pre-
sent graphical visualization and discussion on the results and
findings.

CASE I: When we substitute the values of parameters
i as     252, 63, 378, 126, 63,1 2 3 4 5= = = = =
 42, and 21,6 7= = in equation (4), we obtain the
seventh-order SKI equation in Caputo sense as,
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The exact solution of the seventh-order SKI equation (31) can
be obtained [1]:
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An approximate solution of equation (31) with initial condi-
tion equation (32) using the method discussed in section 6 is
obtained:
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The final series solution is,
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equation (36) using the method discussed in section 6 is obtained:
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7. Discussion

In this section, the dynamics of the obtained results using the
HPZZM method are discussed. The approximate solution of the
seventh-order SKI equation (31) is presented in equation (34), and
its graphical visualization is shown in figures 1 and 2. In figure 1, it
can be seen that the fractional order ρ affects the amplitude of the
wave solution, which varies directly with ρ. Figure 1(a) shows the
evolution of one soliton with fractional order ρ= 1. Similarly,
figures 1(b)–(d) depict the behavior of the one soliton with frac-
tional orders ρ= 0.95, 0.90 and 0.85, respectively.

To simulate these results, Mathematica 13.0 software was
used, and the results are quite reliable and efficient in solving
higher-order nonlinear problems. The numerical error data for
Case I are given in table 1, and for Case II, they are provided in
table 2. The absolute error in the numeric data form is provided

to explore the efficiency of the proposed approach. The num-
erical error data for both tables are displayed in 3D graphs, i.e.
figures 3 and 6.

Figure 1. Evolution of wave solution equation (34) with different fractional orders and κ1 = 0.5.

Figure 2. Visualization of 2D behavior of evolution of wave solution
equation (34) with different fractional orders and κ1 = 0.5.
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Moreover, figures 4 and 5 demonstrate the graphical
visualization of the approximate solution of the seventh-order
Lax equation (16), which is presented in equation (38). The
parameters used are ñ= 0.5 and β= 1. In figure 2, the time t
is considered as 20. Figure 1(a) shows the evolution of one
soliton with ρ= 1. Likewise, figure 1(b)–(d) depicts the

behavior of the wave solution with fractional orders ρ= 0.9,
0.8 and 0.7, respectively.

From the tables and their corresponding plots, it is
observed that at a very small time, the approximate solution is
very close to the exact solution, and their associated absolute
error is small enough. This indicates that the proposed
approach is reliable and efficient in solving higher-order
nonlinear problems.

8. Conclusion

Our focus is on investigating the KdV equation and its
modified versions due to their applications in fluid mechanics
and wave phenomena. Scientists of the twenty-first century

Table 1. Error analysis for Example 1.

(x,t)
Approximate

solutio
Exact
solution

Absolute
error

(−1,0.0001) 0.9560 0.9550 0.0010
(−0.9,0.0001) 1.0930 1.0915 0.0015
(−0.8,0.0001) 1.2429 1.2409 0.0020
(−0.7,0.0001) 1.4032 1.4010 0.0021
(−0.6,0.0001) 1.5698 1.5681 0.0017
(−0.5,0.0001) 1.7363 1.7360 0.0003
(−0.4,0.0001) 1.8939 1.8962 0.0023
(−0.3,0.0001) 2.0325 2.0385 0.0060
(−0.2,0.0001) 2.1410 2.1513 0.0104
(−0.1,0.0001) 2.2097 2.2244 0.0147
(0,0.0001) 2.2321 2.2500 0.0179
(0.1,0.0001) 2.2062 2.2255 0.0193
(0.2,0.0001) 2.1351 2.1535 0.0184
(0.3,0.0001) 2.0263 2.0414 0.0151
(0.4,0.0001) 1.8895 1.8997 0.0102
(0.5,0.0001) 1.7351 1.7398 0.0046
(0.6,0.0001) 1.5726 1.5720 0.0007
(0.7,0.0001) 1.4098 1.4048 0.0050
(0.8,0.0001) 1.2522 1.2444 0.0078
(0.9,0.0001) 1.1039 1.0948 0.0092
(1,0.0001) 0.9672 0.9579 0.0093

Table 2. Error analysis for Example 2.

(x,t) Approximate solutio
Exact
solution Absolute error

(−10,0.01) 0.6804 0.6805 0.0001
(−9,0.01) 0.6809 0.6811 0.0002
(−8,0.01) 0.6820 0.6824 0.0004
(−7,0.01) 0.6844 0.6853 0.0009
(−6,0.01) 0.6896 0.6917 0.0021
(−5,0.01) 0.7004 0.7055 0.0051
(−4,0.01) 0.7211 0.7340 0.0307
(−3,0.01) 0.7574 0.7881 0.0399
(−2,0.01) 0.8340 0.8739 0.0499
(−1,0.01) 1.0160 0.9661 0.0012
(0,0.01) 1.0000 0.9988 0.0491
(1,0.01) 0.8912 0.9403 0.0395
(2,0.01) 0.8839 0.8444 0.0300
(3,0.01) 0.7979 0.7679 0.0123
(4,0.01) 0.7352 0.7229 0.0048
(5,0.01) 0.7048 0.7001 0.0020
(6,0.01) 0.6911 0.6892 0.0008
(7,0.01) 0.6850 0.6842 0.0004
(8,0.01) 0.6822 0.6819 0.0002
(9,0.01) 0.6810 0.6808 0.0001
(10,0.01) 0.6805 0.6804 0.00001

Figure 3. Simulation of error estimate for Case 1.
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have a significant challenge in studying higher-order non-
linear KdV equations. In this research, the seventh-order time-
fractional nonlinear KdV equation has been studied using FC
application. In the analysis, the Caputo differential operator is
used. The vital issue is for us to find the solution to higher
nonlinear PDEs. Several analytical and numerical methods
have been used to analyze the approximate and exact solu-
tions to these problems. Here, the series solution to the pro-
blem under consideration was derived using the ZZ-transform
in conjunction with HPM. To ensure the applicability of the
presented method, we have explored two particular examples
of the presented problem. All results have been simulated
with the help of Mathematica software. The reliability and

Figure 4. Evolution of wave solution equation (34) with different fractional orders.

Figure 5. Visualization of 2D behavior of evolution of wave solution
equation (34) with different fractional orders.
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efficiency of the considered HPM is provided in the form of
tables and graphs. From the table and graphs, we concluded
that the proposed ZZHPM is simple and accurate for solving
higher-order fractional PDEs.
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