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A new physics scenario to explain PeV neutrinos observed in the IceCube experiment is
introduced, with dark matter and dark energy considered. A slowly decaying very heavy fermion
with a PeV mass as the dark matter particle is the origin of the PeV neutrinos. They couple to an
extremely light field and this light field constitutes the dark energy.

Keywords: PeV neutrinos, ultra light scalar, decaying dark matter

PeV neutrinos have been observed in the IceCube experiment
[1, 2]. Their origin, namely how they got to be so energetic, is
still unclear. In this work, we consider the possibility that they
are a result of new physics beyond the Standard Model (SM)
of particle physics.

More remarkably, in fundamental physics nowadays,
there are dark matter (DM) and dark energy (DE) problems.
Attempting to make the connection between all these phe-
nomena, we will work in a simple scenario that includes DM
and DE to understand PeV neutrinos.

To be specific, supposing that the PeV neutrino is a decay
product of a heavy fermion N, N — v+ h where v stands for
SM neutrinos and & the SM Higgs boson, the observation is
explained if the mass of N is about My~ PeV. In such a
situation, N should exist in the Universe for a long time which
is beyond the age of the Universe. Thus N is naturally a DM
constituent that is decaying slowly. We assume N consists of
all of the DM. To describe the above process, the relevant
interaction Lagrangian is written as follows,

A -
L DO —o¢lhN, 1
be (D

where a light scalar ¢ is introduced, / stands for the three
generation SU(2); doublet leptons, and A and M are the
coupling constant and the high energy scale, respectively. The
coupling should be very small for N being long-lived.

The main reason for introducing ¢ is that it is related to
DE, also that in this way the small coupling is made to be
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more natural. Attributing a PeV neutrino to long-lived heavy
DM was proposed before [3-30]. Here we also involve DE.
The point here is the introduction of the static and free light

m
its mass and energy¢density, respectively. We consider p, as
DE, and it is a kind of time-variational or dynamical DE
[33-38]. In this case, m,, is extremely small which is about the
inverse of the Universe lifetime.

Taking ¢ as a background field due to Bose—Einstein
condensation, the production of PeV neutrinos is a two body
decay

scalar field ¢ = sin(mgyt) [31, 32], where m and p, are

N — h+ v, @)

© %

mg
decay produces Higgs particles, there will /be a series of
subsequent decays to Standard Model particles.

Now we estimate N’s lifetime. With 7.5 year accumula-
tion, the experiment observed about 60 events of PeV neu-
trinos [2]. For simplicity, the dark matter N is assumed to be
uniformly distributed throughout the Universe. Based on the
IceCube experimental data, the observed high energy neu-
trinos have no particular direction. Thus we assume that the
PeV neutrinos come from some isotropic sources. Assuming
that N has only one decay channel, we divide the detected
high energy neutrinos into two parts:

with a coupling proportional to A . Since this
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(a) Neutrinos produced BEFORE the IceCube turned on;
(b) Neutrinos produced AFTER the IceCube turned on.

Moreover, high-energy neutrinos move at the speed of light
c=3x108ms™" approximately.

For part (a) neutrinos, at the moment the IceCube turned
on, they were at least inside a sphere with the IceCube as the
sphere’s centre and radius R=7.51y=7.10 x 10'°m.
Denote neutrinos number density as p,, then the number of
neutrinos in a thin spherical shell with radius r is 47Tp,,r2dr.
For a neutrino v at a distance of IceCube r, its velocity is
evenly distributed in all directions. The IceCube detector has
a cross-sectional area of S on a sphere with v as the sphere’s
centre, and r as radius. A neutrino at a distance r away from
the IceCube can be detected with a probability of ﬁ. To sum
up, the number of part (a) neutrinos is

N 4 2 S d 3)
TP, T r.
Py 472

0
Assuming 1 = 10% is the detection efficiency of the IceCube,
and the above quantity times 7 is about 60, so
p,=8.46 x 102" m 2. The energy density of dark matter in
the Universe is about 10GeV -m > [39], so the number
density of N is py = 107> m>. It is known that the lifetime of
N follows the exponential distribution of the parameter 7',
where 7 is the mean lifetime. The number density of N that
has not decayed is a function of time #:

py (1) = pN(O)exp(—é). (4)

Now ¢ is the age of the Universe f, =4.32 x 10'"s. Con-
sidering equation (2), p, = pa(0) — pp(t,), so the equation
L Inf1+ L4 holds. Then we have N’s mean lifetime
T PN
T=4.86 x 107s.

For part (b) neutrinos, suppose that at the moment
t(0<t< T, T="1.5Yy) after the IceCube turned on, they were
generated by N’s decay. Since the lifetime of N follows the
exponential distribution, the probability that lifetime between
toand t, + (T —1) is

tut(T=1) .. T-tnsr T—t
Texp| —— | df ———— .
‘ T T

u

They were at least inside a sphere with the IceCube as the
sphere’s centre and radius R — ct. Similarly, the number of
part (b) neutrinos is

T
n f 4mpy (R — c1)? dr=60. (5
0

S
4r(R —ct)? T

We have 7=2.65 x 10'*s. In part (b), N decays more than a
dozen orders of magnitude faster than part (a), but we can not
tell directly which one is dominant.

If the detected neutrinos are mainly part (a), then part (b)
contributes to detected neutrinos a dozen orders of magnitude
less than (a), therefore no contradiction arises. However, if the
detected neutrinos are mainly part (b), we take
7=2.65x 10" s in part (a)’s calculation, and we find that p,,
is more than a dozen orders of magnitude larger than

’ \

Figure 1. Neutrinos produced before the IceCube is turned on are in
a sphere of R="7.51y.

7

Figure 2. Neutrinos produced after the IceCube is turned on are in a
sphere of R="7.51y.

previously calculated. (a) becomes the dominant source of
neutrinos, contradicting the hypothesis.

So in summary, we have found part (a) is the main source
of neutrinos, with N’s mean lifetime 7y = 4.86 X 10%s.

Let us consider the model in detail. By introducing a real
scalar field ¢ and a Majorana fermion field VN, the Lagrangian
is written as

L= Lou+ 50,0006 — =mE6? + NN

1 _ A
— —NMyN — | =o¢lhN + h.c.), 6
3 N ( M¢ (6)
where i = io?h*. The Lagrangian follows a Z, symmetry
with Z, quantum numbers assigned as:

N: +1, h: +1, ¢ —1,
I —1, er: —1. (@)
All other fields have a Z, quantum number of 1 (called ‘even

parity’).

The ¢ field behaves like a free field because the coupling
A is very small, and its motion is typically described by plane
waves, in the static case,

¢ = @y sin(mgyt). ®)
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We assume that there is a Bose—Einstein condensation in this
static ¢ field. In other words, now ¢ field exists as a back-
ground field and its vacuum expectation (¢) changes over
time:

(@) = (})o sin(mgyty), )

where 7, is now the age of the Universe. In this way, the value
of ¢ field has increased after the Big Bang, and so does the
¢’s energy density. We take this energy density as the DE.

Suppose that ¢ is extremely light and its current value
becomes large for the first time today, namely

moty ~ =, (10)
it is obtained that my4 >~ 1.0 X 1073 ¢eV. In this model, DE is
then

1
pm:%:gﬁw% (11)

From the measured DE today (107°GeV -cm ™), the field
value is obtained: (4)o~ 10" GeV. This means that the ¢
field is highly condensed. Therefore N mainly has the two-
body decay mode N — h+ v. Considering My~ PeV, v is
just the PeV neutrino detected by the IceCube experiment.

The decay width is
2
(2O
16\ M

According to our previous estimate of the mean lifetime of N,
when the new physics scale M takes the Planck mass
10" GeV, the value of \ is about 1077,

Is it possible for N to decay into three particles? It is
necessary to take a fresh look at the issue. For two-body
decay, the decay width has already been calculated in the
previous content. One has to note the fact that the produced ¢
is a boson, and then the probability that ¢ is involved in the
Bose-Einstein condensation needs to be considered. It is
much easier for ¢ to transition to the state where a large
number of ¢ particles already exist [40]. We think of ¢ as the
dark energy field, assuming ¢ has zero momentum, thus the
vacuum (noted as |UJ), which consists of a large number of ¢
particles with zero momentum) is ¢’s eigenstate whose

at the E, — 0 region,

Al ~ L(A)ZM Ey AE,

- 2673\ M N -
For the above decay process, when E; — 0, at the amplitude
level, the amplitude is proportional to (a®);_,|0) with |0) the
trivial vacuum, and (a@)}; is the creation operator of the ¢
field. When we consider the vacuum is a Bose—Einstein
condensate, the amplitude will be proportional to (aQ)Z|U>,
then the decay width is proportional to the square of the
amplitude, thus proportional to (0] (a?)(a®)'|0) ~ {|¢[?).
Once the ¢ particle is produced by decay, it immediately
‘melts into’ the Bose—Einstein condensation state |UJ). So in
summary, the width of two-body decay is equivalent to the

width of three-body decay.

For  (2n+ 1)-body N—Q2n—1¢p+v+h

(corresponding interaction Lagrangian is %qﬁ”*lth ), the

decay

decay width is

2
24n+27.r4n71 M2n71

2n—1 2n—1
x f( H dECs‘"k E¢k)(MN - Z Ed)k)’
k=1 k=1

at the Ey ..., Ey,  — 0 region,

1 AoV
Al > 24n+2ﬂ.4nfl(M2nfl)

X MNE¢1 E@z,,,l AE¢1 AEG‘)Zn—l'

Similar discussion and analysis as in
paragraph can also be carried out.
Discussion to clarify the physics meaning of this work is
necessary. (1) The IceCube experiment has observed high
energy for TeV up to PeV. While TeV neutrinos are expected
to be explained mainly by standard astrophysics, PeV ones
are considered using new physics in this work. If this is to be
true, with the accumulation of data, the IceCube experiment
will observe that TeV neutrinos can be traced back to astro-
physical origins, and the PeV neutrinos are more isotropic. In
addition, this model predicts the existence of cosmic high
energies positrons and electrons with energy up to PeV, since

the previous

h— 1t +1~

e+, +ut
Il

: Vp+ Ve t+e”

ve+ U+

eigenvalue is (¢): ¢|U) = (4)|U). For three-body
N — ¢+ v+ h, the decay width is

decay

1

)\ 2
r— ﬁ(ﬁ) de¢ E,(My — Ey),

Uy + Ve + et

Thus the neutrino energy spectrum is a continuous distribu-
tion with an apparent accumulation at PeV energy. (2) The
neutrino masses have alternative origins such as the standard
seesaw mechanism. The mass induced by equation (6) is too
small to be realistic. (3) DM is decaying slowly. (4) The
involvement of a very light scalar field is ad-hoc, however,
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the model is very simple. It says that DE is oscillating, and
DE has been increasing since the Big Bang of the Universe.
In the early universe, the cosmological constant is small.
More complicated or elegant DE models can be incorporated.
(5) The coupling constant is unnaturally small, this interaction
seems weaker than the gravity. However, we may introduce
higher dimension interaction instead of dimension 5 of
equation (1), to make the coupling more natural. Never-
theless, in our way, it is interesting the PeV neutrinos, the DM
and the DE are coupled together.
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