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Abstract
Multi-party quantum communication has gradually attracted widespread attention. To realize the
perfect transmission of quantum states among multiple participants, a novel multi-party
controlled cyclic remote preparation protocol for arbitrary single-qubit states with three senders
is proposed. With the permission of one controller, each sender can transmit an arbitrary single-
qubit state to its neighbor. In addition, we give a universal protocol for multi-party controlled
cyclic remote preparation of arbitrary single-qubit states in the case of multiple senders, which
can realize deterministic cyclic preparation of multiple quantum states in one direction. The
scheme shows that the communication task can be successfully achieved only if all senders
cooperate with the controller, and there is no need for the senders to employ information splitting
and additional operations before performing measurements. Finally, we discuss the cyclic remote
preparation protocol with three senders under five types of noisy environment, and the closeness
between the output state and original state is measured by calculating fidelity.

Supplementary material for this article is available online

Keywords: controlled cyclic remote preparation, network coding, measurement basis, quantum
noise, fidelity

1. Introduction

Quantum entanglement is one type of significant resource.
Many kinds of quantum cryptographic protocols utilizing
entanglement have been proposed, such as quantum secure
direct communication [1], quantum network coding [2–5],
and quantum operation sharing [6–8]. As we all know, remote
state preparation (RSP), as an important application of
quantum entanglement, was first proposed by Lo [9] for the
transmission of pure known states. In RSP, the information of
the desired state is known to the sender, while it may cause
information leakage in the process of information transmis-
sion. Therefore, multi-party RSP has been investigated to
enhance security, such as joint remote state preparation
[10–13] and controlled remote state preparation [14–17]. In
addition, bidirectional RSP [18–21], hierarchical RSP
[22–24] and RSP in noisy environments [25, 26] have been
studied.

To better satisfy the needs of quantum communication,
Sang et al [27] proposed a protocol for controlled tripartite
remote preparation by utilizing a seven-qubit entangled
channel, in which three single-qubit states were prepared
deterministically. Wang et al [28] then proposed a con-
trolled cyclic remote state preparation (CCRSP) protocol of
arbitrary-qubit states. Zha et al [29] presented a novel
deterministic controlled tripartite remote preparation
scheme for arbitrary single-qubit states via a seven-qubit
entangled state. Peng et al [30] proposed a scheme for
cyclic remote state preparation (CRSP) of arbitrary single-
qubit states using a six-qubit entangled state, and it can also
be extended to systems with n senders, allowing for the
cyclic preparation of quantum states in different directions.
Afterward, Zhang et al [31] presented a cyclic joint remote
state preparation (CJRSP) protocol by using three Green-
berger-Home-Zeilinger (GHZ) states, and further general-
ized it from three senders to n senders. They also discussed
the protocol in amplitude-damping noisy environment. Sang
[32] put forward a scheme of controlled CJRSP for arbitrary
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single-qubit states by sharing a ten-qubit entangled channel.
Furthermore, Shi [33] proposed a scheme for unidirectional
CCRSP of single-qutrit equatorial states via a seven-qutrit
entangled state. Ma et al [34] also proposed a novel pro-
tocol for CCRSP of single-qutrit equatorial states. In addi-
tion to these mentioned protocols for cyclically preparing
arbitrary single-qubit states, Sun et al [35] presented a
protocol for cyclically preparing arbitrary two-qubit states
and studied two-type quantum noises. Other protocols for
cyclic remote preparation had been also proposed, such as
multi-hop [36] and asymmetric [37] CRSP schemes.

Inspired by the above works, we first propose a scheme
for CCRSP of arbitrary single-qubit states among three sen-
ders by utilizing a seven-qubit entangled state. In the scheme,
it is assumed that the senders cannot communicate with each
other through a classical channel, but they just communicate
with the controller. Under the assistance of the controller, one
sender could prepare an arbitrary single-qubit state for another
in one direction. Only if all the participants cooperate can the
three single-qubit states be prepared successfully. It is
worthwhile to say that all senders are not required to employ
information splitting and additional unitary operations before
making measurements, owing to the ingenious construction of
the measurement basis. Moreover, we generalize the CCRSP
from three senders to the case of n senders and propose a
universal protocol for multi-party CCRSP that can transmit n
arbitrary single-qubit states at one time in the quantum net-
work. Furthermore, in light of the influence of the actual
environment, we study the impact of five-type quantum
noises on the proposed CCRSP scheme with three senders. To
better analyze the influence of quantum noise, fidelity is uti-
lized to describe the closeness between the output states and
the original states. The result indicates that fidelity is related
to the coefficients of the prepared states and the noise para-
meters. The higher the fidelity, the better the communication
quality, and the less information is lost.

The remainder of our paper is arranged as follows. In
section 2, we propose a CCRSP protocol with three senders.
In section 3, a universal multi-party CCRSP protocol with n
senders is presented. We then offer some discussions and
comparisons in section 4. In section 5, we study the effect of
quantum noise on the proposed scheme in section 2. Last, we
summarize our work in section 6.

2. CCRSP scheme with three senders

In this section, a protocol for cyclically preparing arbitrary
single-qubit states in one direction among three senders is
proposed. With the aid of one controller Charlie, the sender
Alice1 wants to help Alice2 prepare an arbitrary single-qubit
state |f1〉, Alice2 wishes to prepare an arbitrary single-qubit
state |f2〉 for Alice3, and Alice3 desires to prepare an arbitrary
single-qubit state |f3〉 at Alice1ʼs site. Note that these senders
are also receivers. For convenience, the arbitrary single-qubit

state is indicated as

0 1 , 1j j jf a bñ = ñ + ñ∣ ∣ ∣ ( )

where αj denotes a real number, βj denotes a complex num-
ber, and they also obey the normalization condition
|αj|

2+ |βj|
2= 1, j= 1, 2, 3. The sender Alicej grasps the

coefficients of state |fj〉, but the receiver Alicej 1 mod 3+ ( ) knows
nothing about it.

Suppose that the three senders and the controller Charlie
pre-share a seven-qubit entangled channel
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where 00 111

2
j ñ = ñ  ñ∣ (∣ ∣ ), Alice1 processes qubits (1,

6), Alice2 holds qubits (2, 3), Alice3 owns qubits (4, 5), and
qubit 7 belongs to Charlie. To complete our protocol, Alice1,
Alice2, Alice3 and Charlie need to work together to perform
the following operations.

Step 1. The sender Alicej ( j= 1, 2, 3) introduces an
auxiliary particle 0 j2 1ñ - ¢∣ ( ) locally, and then employs a Con-
trolled-Not (CNOT) operation C j j2 1 , 2 1- - ¢( ) ( ) , where the qubit
(2j− 1) works as the controlled qubit, and the qubit j2 1- ¢( )
as the goal qubit. Then the quantum channel |Ω〉 transforms
into
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Step 2Alicej employs a two-qubit projective measure-
ment on qubits j j2 1 , 2 1- - ¢[( ) ( ) ] under the basis
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Alicej then transmits the measurement result in the form of
classical messages sjtj (sj, tjä {0, 1}) to Charlie through the
classical channel.

Based upon the measurement bases { s t
1

1,1
1 1

h ñ ¢∣ },

{ s t
2

3,3
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h ñ ¢∣ } and { s t
3
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h ñ ¢∣ }, we can rewrite the state W¢ñ∣ as
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where s t s t s t 2,4,6,71 1 2 2 3 3F ñ∣ is the composite state of qubits
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(2, 4, 6, 7), and it can be expressed as
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where ⊕ is an addition mod 2.

Step 3. If Charlie desires to help Alicej, he is required to
perform one single-qubit measurement under the Z basis

l l, 0, 1ñ Î{∣ { }}. Depending on the received classical mes-
sages, Charlie just transmits two-bit classical messages
(sP( j+1),tP( j+1)⊕ l) to Alicej 1 mod 3+ ( ) respectively by making
use of network coding. Here P is the cycling permutation (1,
2, 3).

If Charlie gets the measurement result |0〉, the state of
qubits (2,4,6) will collapse into

s s1 1 1 1 . 7
j

s t s
j j
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j j j
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While if Charlie’s measurement result is |1〉, the collapsed
state is expressed as
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Step 4.According to the classical messages received,
Alicej 1 mod 3+ ( ) ( j= 1, 2, 3) executes the recovery operation

R X Z 9A
s s t l
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P j P j P j

1 mod 3
1 1 1= Å Å
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on her qubit to obtain the goal state |fj〉. Here X and Z are
Pauli operators, and X0= Z0= I. In a word, by employing
suitable recovery operations of equation (9) on the col-
lapsed state of equations (7) and (8), Alicej can always be
capable of recovering the desired state with unit success
probability.

In practice, there are a total of 128 types of measurement
outcomes, however, we just list partial recovery operations in
the case that Alice1ʼs measurement result is 00

1h ñ∣ in table 1,
where MAj

and MC are the measurement outcomes of Alicej
and Charlie. RAj

denotes Alicejʼs recovery unitary operation.
A specific example is given below to clearly illustrate our

scheme. Generally, we assume that Alice1ʼs, Alice2ʼs and
Alice3ʼs measurement results are 00

1h ñ∣ , 01
2h ñ∣ and 10

3h ñ∣ , then
qubits (2, 4, 6, 7) collapse into
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If Charlie obtains the measurement outcome |1〉, thus the
state of qubits (2, 4, 6) collapses into
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Alice1, Alice2 and Alice3 execute Pauli operations X6, Z2
and I4 on their qubits 6, 2, 4, respectively, thus the desired
single-qubit states |f3〉, |f1〉 and |f2〉 are reconstructed
successfully.

3. CCRSP scheme with multiple senders

In this section, we present a deterministic multi-party CCRSP
protocol of arbitrary single-qubit states for the case of n
senders.

Alice1 wants to help Alice2 prepare an arbitrary single-
qubit state |f1〉, Alice2 wishes to help Alice3 prepare an
arbitrary single-qubit state |f2〉, L, Alicen desires to prepare
an arbitrary single-qubit state |fn〉 for Alice1. The single-qubit
state |fj〉 ( j= 1, 2, L ,n) is shown in equation (1), whereby
the real numbers αj and complex numbers βj follow the
normalization condition |αj|

2+ |βj|
2= 1.

Assume Alice1, Alice2,L, Alicen and Charlie pre-share a
(2n+ 1)-qubit entangled channel
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Table 1. The relation between the partial measurement results MA2( ,
M M,A C3 ) of three participants and recovery unitary operations
R R RA A A1 2 3( ) when MA1 is 00

1h ñ∣ .

MA2 MA3 MC R R RA A A1 2 3 MC R R RA A A1 2 3

00
2h ñ∣ 00

3h ñ∣ |0〉 I6I2I4 |1〉 Z6Z2Z4

00
2h ñ∣ 10

3h ñ∣ |0〉 Y6I2I4 |1〉 X6Z2Z4

00
2h ñ∣ 01

3h ñ∣ |0〉 Z6I2I4 |1〉 I6Z2Z4

00
2h ñ∣ 11

3h ñ∣ |0〉 X6I2I4 |1〉 Y6Z2Z4

10
2h ñ∣ 00

3h ñ∣ |0〉 I6I2Y4 |1〉 Z6Z2X4
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2h ñ∣ 10
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10
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01
2h ñ∣ 10

3h ñ∣ |0〉 Y6I2Z4 |1〉 X6Z2I4

01
2h ñ∣ 01

3h ñ∣ |0〉 Z6I2Z4 |1〉 I6Z2I4

01
2h ñ∣ 11

3h ñ∣ |0〉 X6I2Z4 |1〉 Y6Z2I4

11
2h ñ∣ 00

3h ñ∣ |0〉 I6I2X4 |1〉 Z6Z2Y4

11
2h ñ∣ 10

3h ñ∣ |0〉 Y6I2X4 |1〉 X6Z2Y4

11
2h ñ∣ 01

3h ñ∣ |0〉 Z6I2X4 |1〉 I6Z2Y4

11
2h ñ∣ 11

3h ñ∣ |0〉 X6I2X4 |1〉 Y6Z2Y4

3

Commun. Theor. Phys. 75 (2023) 105103 L Gong et al



Here Alicej processes qubits (2j− 2, 2j− 1), j= 2, 3, L ,n,
and qubit 2n+ 1 belongs to Charlie. In particular, Alice1
holds qubits (1, 2n). The specific process of the protocol are
described in the following steps.

Step 1.Alicej ( j= 1, 2, L ,n) first introduces an aux-
iliary particle 0 j2 1ñ - ¢∣ ( ) , and then employs a CNOT operation
C j j2 1 , 2 1- - ¢( ) ( ) . The quantum channel |C2n+1〉 then becomes
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Step 2.Alicej performs a two-qubit projective measure-
ment on her qubits j j2 1 , 2 1- - ¢[( ) ( ) ] on the basis of
equation (4). After the measurement, Alicej notifies Charlie
classical message sjtj via the classical channel when the
measurement result is s t

j
j j

h ñ∣ , (sj, tj ä {0, 1}).

In terms of measurement basis { s t
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reexpress the state |C3n+1〉 as
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where the collapsed state of qubits (2, L ,2n, 2n+ 1) can be
expressed as
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Step 3. To complete the task, Charlie employs a single-
qubit measurement on his qubit under the Z basis. He then
transmits two-bit classical messages (sP( j+1),tP( j+1)⊕ l) to the
receiver Alicej n1 mod+ ( ).

If Charlie obtains the measurement result as |0〉, the
qubits (2, 4, L ,2n) will collapse into
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while if Charlie’s measurement result is |1〉, the collapsed
state is
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Step 4 The receiver Alicej n1 mod+ ( ) ( j= 1, 2, L ,n) per-
forms the appropriate recovery operation RAj n1 mod+ ( ) in
equation (9) and acquires the goal state

0 1 , 18
j

n

j j
1

a bñ + ñ
=

⨂( ∣ ∣ ) ( )

according to the classical messages they received, wherein P
is the cycling permutation n n1, , 1, ,2 1- ¼ -( ) .

As a consequence, Alice1, Alice2, L, Alicen can deter-
ministically construct n arbitrary single-qubit states |fn〉, |f1〉,
L ,|fn−1〉.

4. Discussions and comparisons

In this part, we first discuss the intrinsic efficiency [38] and
the necessary operations of our universal protocol. After, we
provide some comparisons with other protocols.

The intrinsic efficiency is a crucial factor for evaluating
the performance of a protocol, which is defined by

q

q b
, 19s

u t
h =

+
( )

wherein qs represents the number of qubits teleported, qu
denotes the number of particles used in the quantum channel,
bt acts for the classical bits that need to be transmitted.

As mentioned above, we propose a CCRSP scheme to
simultaneously and deterministically prepare n arbitrary sin-
gle-qubit states by sharing a (2n+ 1)-qubit entangled chan-
nel. Alicej ( j= 1, 2, L ,n) respectively transmit two classical
bits to Charlie. Charlie encodes his classical message
corresponding to his measurement outcome with the classical
messages that he received from Alicej, and then sends the
encoded results to Alicej n1 mod+ ( ). The total classical com-
munication cost (CCC) is 4n classical bits. Thus, the intrinsic
efficiency of our protocol is

n

n n

n

n2 1 4 6 1
. 20h =

+ +
=

+( ) ( )
( )

Specially, for our CCRSP protocol with three senders, the
intrinsic efficiency is 15.79%3

19
h = » .

If network coding is not utilized, the total CCC is 5n bits.
In this scenario, the intrinsic efficiency will be

n

n n

n

n2 1 5 7 1
, 21h =

+ +
=

+( ) ( )
( )

which is lower than the intrinsic efficiency in equation (20),

Table 2. Comparison with previous protocols (n= 6).

Protocol QC BO CCC NTQ η

[28] 13-ES SQM, RUO 12 6 24%6
25

=

[30] 12-ES CNOT,
SQM, RUO

12 6 25%1
4
=

[31] 18-ES SQM, RUO 18 6 16.67%1
6
»

Ours 13-ES CNOT,
TQM, RUO

24 6 16.22%6
37

»

4
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so the intrinsic efficiency of CCRSP protocol with three
senders is 13.64%3

25
h = » . It reveals that the utilization of

network coding can effectively reduce the CCC and enhance
the intrinsic efficiency.

In the following, we present some comparisons with
other CRSP protocols. To make the comparison convincing,
we only choose a specific value n= 6. The results of com-
parisons with previous protocols are given in table 2. A
detailed explanation of the abbreviations is provided as fol-
lows: QC (quantum channel), ES (entangled state), BO (basic
operation), RUO (recovery unitary operation), SQM (single-
qubit measurement), TQM (two-qubit measurement), CNOT
(Controlled-NOT), NTQ (number of the teleported qubits).

From table 2, it can be seen that the intrinsic efficiency of
[28, 30, 31] are all greater than ours. Besides their unfavor-
able aspects, our schemes also have advantages. In particular,
adopting two-particle measurement instead of single-qubit
measurement, the senders are not required to employ infor-
mation splitting before performing measurements. The
advantage is that two-qubit information can be obtained
simultaneously in a single operation. Compared to the scheme
in [28], their protocol failed in some cases of measurement
results, but the success probability of ours can reach one, i.e.
our protocol is deterministic. In comparison with the scheme
in [30], our protocol has higher security, since the introduc-
tion of a controller can be effective in preventing a dishonest
sender from not sending messages. Further, compared with
the scheme in [31], five qubits are saved in the entangled
channel, and fewer particles are exposed to noise during
entanglement distribution. As a result, in comparison to other
similar protocols, our protocol only increases the CCC but
optimizes other aspects. Though it reduces the internal effi-
ciency, the feasibility of our protocol is greatly improved.

5. The CCRSP scheme subjects to noisy
environment

In real situations, however, quantum noise may have some
influence on the quantum channel. It is general to assume that
one of the participants is responsible for constructing the
shared entanglement. The constructor then needs to send
particles to each participant, and every particle to be trans-
mitted will be inevitably affected by quantum noise during the
distribution of entanglement. In what follows, we investigate
the proposed CCRSP scheme in section 2 under five types of
noises (bit-flip, phase-flip, bit-phase flip, amplitude-damping,
and phase-damping noises).

5.1. Density operator representation of the CCRSP scheme

To better analyze the impact of quantum noise on the CCRSP
protocol with three senders, it is convenient to redescribe the
protocol in terms of density operators. Thus, the desired
prepared states are denoted as |f1〉|f2〉|f3〉〈f3|〈f2|〈f1|, and
the quantum channel is shown as r = W¢ñáW¢∣ ∣. Alicejʼs
( j= 1, 2, 3) and Charlie’s measurement operators are

M s t, , 0, 1A s t
j

s t
j

j jj j j j j
h h= ñá Î{∣ ∣ { }} and M 0 0 , 1 1C = ñá ñá{∣ ∣ ∣ ∣}. Hence,

we redescribe the CCRSP scheme with three senders as
follows.

Step 1.Alicej first introduces an auxiliary particle
0 j2 1ñ - ¢∣ ( ) , and then executes a CNOT operation C j j2 1 , 2 1- - ¢( ) ( ) .

Step 2.Alice1 measures her qubits 1, 1¢( ) by measure-
ment operators MA1

and the system of qubits
2, 3, 3 , 4, 5, 5 , 6, 7¢ ¢( ) turns to

M M

M M
tr

tr
. 22

A A

A A
1 1,1

1 1

1 1

⎛

⎝
⎜

⎞

⎠
⎟r

r

r
= ¢ ( )

( )
†

†

Alice2 measures her qubits 3, 3¢( ) by measurement
operators MA2

and the system of qubits 2, 4, 5, 5 , 6, 7¢( )
becomes

M M

M M
tr

tr
. 23
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⎝
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r

r
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†

†

Alice3 measures her qubits 5, 5¢( ) by measurement
operators MA3

and the system of qubits (2, 4, 6, 7) collapses
into

M M

M M
tr

tr
. 24
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3 3

3 3
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⎝
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r
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†

†

Step 3. Charlie selects measurement operators MC for
measuring his qubit 7, the system of qubits (2, 4, 6)
becomes

M M

M M
tr

tr
. 25C C

C C
4 7

3

3

⎜ ⎟
⎛
⎝

⎞
⎠

r
r

r
=

( )
( )

†

†

Step 4.Alicej performs the unitary operation RAj

described in equation (9) and gets the output state

R R R R R R . 26A A A A A Aout 41 2 3 1 2 3r r= ( ) ( ) ( )†

5.2. Five types of quantum noises

The bit-flip, phase-flip and bit-phase flip noises are known
as Pauli noises. The bit-flip noise refers to changing a qubit
from |0〉 to |1〉 or |1〉 to |0〉 with probability λ. Interestingly,
the phase-flip noise only changes the phase of qubit |1〉 to
−|1〉 with probability λ, while the phase of qubit |0〉
remains unaffected. The bit-phase flip noise can be regarded
as the combination of both the bit-flip and phase-flip noises,
since σy= iσxσz. Their actions are denoted as Kraus
operators [26]

E I E1 , , 27x0
bf

1
bfl ls= - = ( )

E I E1 , , 28z0
pf

1
pfl ls= - = ( )
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E I E1 , . 29y0
bp

1
bpl ls= - = ( )

The amplitude-damping (AD) and phase-damping (PD)
noises are two types of important decoherence noises. The
AD noise refers to the dissipation of energy in a quantum
system, while the PD noise refers to the loss of quantum
information without any energy loss, and their actions are
shown by a set of Kraus operators [26]

30E E
1 0
0 1

, 0
0 0

,0
a

1
a

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠l

l=
-

= ( )

E I E

E

1 , 1 0
0 0

,

0 0
0 1

, 31

0
p

1
p

2
p

l l

l

= - =

=

( )
( ) ( )

where λ(0� λ� 1) indicates the decoherence rate of the
five types of quantum noises.

5.3. The output state and fidelity in a noisy environment

Without losing generality, suppose that the controller Charlie
prepares the quantum channel |Ω〉, then he distributes qubits
(1, 6) to Alice1, qubits (2, 3) to Alice2, and qubits (4, 5) to
Alice3 through the noisy environment. It is reasonable to
introduce the auxiliary qubits locally via the senders, and they
are not exposed to the noisy environment. Thus, we assume
that the auxiliary particles used in local CNOT operations are
not affected by quantum noise during the distribution of
entanglement. Supposed that there is the same type of noise
effect on each channel, the effect of noise on the shared
channel ρ is expressed as

E E E E E E E E E E E E ,

32
j j j

j j j j j j j j j j j j
, ,

1 6 2 3 4 5 1 6 2 3 4 5

1 2 3

1 1 2 2 3 3 1 1 2 2 3 3åe r r=( )

( )

† † † † † †

where the subscripts j1, j2, j3 denote the Kraus operator that is
employed. In AD and Pauli noises, j1, j2, j3ä {0, 1}, while in
PD noise, j1, j2, j3ä {0, 1, 2}. The superscripts 1, 6, 2, 3, 4, 5
denote which qubit that operator E acts on. To calculate the
fidelity of the output state, we replace ρ by ε(ρ) in
equation (22), and we can obtain the fidelity as

F . 331 2 3 out 3 2 1f f f r f f f= á á á ñ ñ ñ∣ ∣ ∣ ∣ ∣ ∣ ( )

Here, we just take the measurement results
100

1
01
2

10
3h h hñ ñ ñ ñ∣ ∣ ∣ ∣ as an example, and we show the impact of

bit flip noise on the CCRSP in more detail. For convenience,
denote 1l l= - . From equation (32), the effect of noise on

the shared quantum channel W¢ñ∣ is
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As Alice1ʼs measurement result is 00
1h ñ∣ , the system of

qubits 2, 3, 3 , 4, 5, 5 , 6, 7¢ ¢( ) becomes
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where g0
2 2 3l l= +( ) .

If Alice2ʼs, Alice3ʼs and Charlie’s measurement results
are 01

2h ñ∣ , 10
3h ñ∣ and |1〉, then Alice1, Alice2 and Alice3 perform

recovery unitary operation R R R X Z IA A A 6 2 41 2 3 = to recover
the original states. By calculating equations (23) to (26) we
can get the output state
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Since the cyclically prepared state is j j1
3 f ñ ==⨂ ∣

0 1j j j1
3 a bñ + ñ=⨂ ( ∣ ∣ ), the fidelity can be obtained as
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where zRe( ) denotes the real part of a complex number z, and
zIm( ) denotes the imaginary part of z.
In the case of measurement results 100

1
01
2

10
3h h hñ ñ ñ ñ∣ ∣ ∣ ∣ ,

similar calculations could be performed to obtain the output
states and their corresponding fidelities under the other four
kinds of noisy environment.

In the phase-flip noisy environment, the output state and
fidelity are
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The output state and fidelity in the bit-phase flip noisy
environment are
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5.4. Analysis

Based on the aforementioned calculation results, we can
conclude that the fidelity of the output state is dependent on
both the coefficients of the prepared state and the noise
parameters under five types of noisy environment. Here we
just consider the relationship between the fidelity and
noise parameter when the prepared state is determined.
Take the measurement result 100

1
01
2

10
3h h hñ ñ ñ ñ∣ ∣ ∣ ∣ as an

example, assume that the cyclically prepared state is
0 1 0 1 0 11

2

1

2

1

2
ñ + ñ Ä ñ + ñ Ä ñ + ñ(∣ ∣ ) (∣ ∣ ) (∣ ∣ ), ,j j

1

2
a b= =(

j 1, 2, 3= ), we calculate the fidelities in five types of noises
and present them in table 3. We further plot the image of the
fidelity as the function of noise parameter λ in figure 1.

Obviously, the fidelity is always one under bit-flip noise
regardless of the variation of the noise parameter λ. Inter-
estingly, the fidelities are the same under the phase flip and
bit-phase flip noises, which first decrease and then increase
with the increase of noise parameter λ. When 1

2
l = , the

fidelities under the phase flip and bit-phase flip noises both
reach a minimum value 1

4
, which means more information has

been lost. While in phase-damping noise, the fidelity also first
decreases and then increases with λ changes. In the ampl-
itude-damping noisy environment, the fidelity reduces as the
noise parameter λ increases and has a minimum value 1

8
. In

short, the lower the fidelity, the more information is lost.

6. Conclusions

In this paper, we put forward a protocol for cyclically pre-
paring arbitrary single-qubit states in one direction simulta-
neously and deterministically. At first, we propose a CCRSP
protocol with three senders to prepare three arbitrary single-
qubit states by sharing a seven-qubit entangled state. Several
simple operations of single-qubit measurement, two-qubit
projective measurement and Pauli operations are needed to
accomplish the task. One of the unique advantages of our
solution is that the senders do not need to employ information

Figure 1. The plot of the function between fidelity and noise
parameter λ.

Table 3. The fidelities in five types of noisy environment when the
cyclically prepared state is 0 1 01
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splitting and additional unitary operations before making
measurements. With the aid of network coding, allowing
network nodes to encode and combine the received messages,
n-bit CCC can be saved in our protocol. In addition, we
consider the case of multiple senders and give a universal
CCRSP protocol, which could better meet the requirements of
future quantum network communication. Obviously, bidir-
ectional controlled remote preparation is a specific case of the
CCRSP with two senders.

As widely known, quantum noise inevitably exists in the
communication environment. We also discuss the impact of
five types of quantum noises on the proposed CCRSP scheme
with three senders, and fidelity is utilized to measure the
quality of quantum communication. By calculating and ana-
lyzing, we can conclude that the fidelity is dependent on the
coefficients of the prepared state and the noise parameters.
The higher the fidelity, the better the communication and less
information has been lost. Therefore, a quantum commu-
nication protocol with resistance to quantum noise will be a
more interesting topic in our subsequent research.
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