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Abstract
We review the theoretical aspects of holographic dark energy (HDE) in this paper.
Making use of the holographic principle (HP) and the dimensional analysis, we derive the
core formula of the original HDE (OHDE) model, in which the future event horizon is
chosen as the characteristic length scale. Then, we describe the basic properties and the
corresponding theoretical studies of the OHDE model, as well as the effect of adding dark
sector interaction in the OHDE model. Moreover, we introduce all four types of HDE
models that originate from HP, including (1) HDE models with the other characteristic
length scale; (2) HDE models with extended Hubble scale; (3) HDE models with dark sector
interaction; (4) HDE models with modified black hole entropy. Finally, we introduce the
well-known Hubble tension problem, as well as the attempts to alleviate this problem under
the framework of HDE. From the perspective of theory, the core formula of HDE is obtained
by combining the HP and the dimensional analysis, instead of adding a DE term into the
Lagrangian. Therefore, HDE remarkably differs from any other theory of DE. From the
perspective of observation, HDE can fit various astronomical data well and has the potential
to alleviate the Hubble tension problem. These features make HDE a very competitive dark
energy scenario.
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1. Introduction

The holographic principle (HP) [1, 2], which was inspired by
the black hole thermodynamics [3, 4], reveals that all the
physical quantities located in a volume of space can be
represented by some physical quantities located on the
boundary of that space. After the discovery of the Anti-
deSitter/Conformal field theories(AdS/CFT) correspon-
dence [5], it is widely believed that the HP should be a fun-
damental principle of quantum gravity. So far, the HP has
been applied to various fields of physics, including nuclear
physics [6], condensed matter physics [7], theoretical physics
[8] and cosmology [9].

In this paper we focus on the dark energy (DE) problem
[10, 11]. The most popular theoretical model is the ΛCDM
model, which includes a cosmological constant Λ and a cold
dark matter (CDM) component. But the ΛCDM model has
two cosmological constant problems [12–20]: (a) Why
ρΛ≈ 0? (b)Why ρΛ∼ ρm now? In the past 25 years, hundreds
of DE models have been proposed; however, so far the nature
of DE is still a mystery.

In essence, the DE problem should be an issue of
quantum gravity. Since the HP is the most fundamental
principle of quantum gravity, it may also has great
potential to solve the DE problem. In 2004, by applying the
HP to the DE problem, One of the present authors (Miao
Li) proposed a new DE model, i.e. holographic dark energy
(HDE) model [21]. The DE energy density ρde of this
model only relies on two physical quantities: (1) the
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reduced Planck mass M G1 8p pº , where G is the
Newton constant; (2) the cosmological length scale L,
which is chosen as the future event horizon of the Universe
[21]. Note that this model is the first DE model inspired by
the HP [22]. From now on, we will call it the original HDE
(OHDE) model.

So far, the idea of applying the HP to the DE problem has
drawn a lot of attention:

1. To explain the origin of HDE, many different theoretical
mechanisms are proposed;

2. To consider the interaction between dark sectors, the
interacting HDE models are studied;

3. A lot of other HDE models are proposed, where different
forms of L are taken into account.

4. Some attempts are made, to alleviate the Hubble tension
problem under the framework of HDE.

In this paper, all the topics mentioned above will be
reviewed. We assume today’s scale factor a0= 1, where the
subscript ‘0’ always indicates the present value of the phy-
sical quantity. In addition, we use the metric convention
(−,+,+,+), as well as the natural units c= ÿ= 1.

2. The basic of cosmology

This section introduces the basics of cosmology, including the
Friedmann–Lemaître–Robertson–Walker (FLRW) cosmol-
ogy, as well as the DE problem.

2.1. Friedmann–Lemaître–Robertson–Walker cosmology

Modern cosmology has two cornerstones. The first corner-
stone is general relativity (GR), whose core is the Einstein
field equation

( )G R g R GT
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2
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Note that Gμν is the Einstein tensor, Rμν is the
Ricci tensor, R is the Ricci scalar, gμν is the metric, and
Tμν is the energy-momentum tensor. In addition,
Tμν= (ρ+ p)uμuν+ gμνp, where ρ and p are the total energy
density and the total pressure of all the components,
respectively.

The second cornerstone is the cosmological principle, i.e.
the Universe is homogeneous and isotropic on large scales. It
means that the Universe should be described by the FLRW
metric
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Note that t is the cosmic time, a(t) is the scale factor, r is
the spatial radius coordinate, Ω2 is the two-dimensional unit
sphere volume, and the quantity k characterizes the curvature
of three-dimensional space.

Based on equations (1) and (2), two Friedmann equations
can be obtained
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Here H a aº is the Hubble parameter, which denotes
the expansion rate of the Universe.

From these two Friedmann equations, one can see that
the pressure p affects the expansion of the Universe: if
p>−ρ/3, the Universe will decelerate; if p<−ρ/3, the
Universe will accelerate. Moreover, if all the components in
the Universe were determined, the expansion history of the
Universe would be determinedtoo.

2.2. Dark energy problem

Let us start from a short introduction to the history of the DE
problem. In 1917, to maintain a static Universe, Einstein
added a cosmological constant Λ in the Einstein field
equations [23]. Afterwards, because of the discovery of cos-
mic expansion, Einstein declared that this was the biggest
mistake he made in his whole career. In 1967, Zel’dovich
reintroduced the cosmological constant by taking the vacuum
fluctuations into account [24]. In 1998, Two astronomical
teams discovered the accelerating expansion of the Universe
[10, 11], which declares the return of DE.

As is well known, the Universe has four main compo-
nents: baryon matter, DM, radiation, and DE. So the first
Friedmann equation satisfies

Here H0= 100h(km · s−1 ·Mpc−1) denotes the present
value of the Hubble parameter, h denotes the Hubble con-
stant, z= a−1− 1 denotes the redshift, i i c0 0 0r rW º =

H M3i p0 0
2 2r denote the present fractional densities of various

component. Note that the total fractional matter density
Ωm=Ωb+Ωdm, the fractional energy density of spatial cur-
vature M k a3k p

2 2r º - , and the DE density function
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where w≡ pde/ρde is the DE equation of state (EoS) [25–30].
As mentioned above, in the past 25 years hundreds of DE
models have been proposed; different DE models will yield
different forms of EoS.
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In 1989, Weinberg published a review article of DE,
which divided various DE models into five categories [31]:

1. Symmetry. This category includes many theoretical
attempts, such as no-scale supersymmetry [32] and
complexification of coordinates [33].

2. Anthropic principle. The key idea is a multiverse, where
different DE energy densities can be realized [34, 35].
We live in a universe with the observed DE density,
because it allows long enough time for galaxy formation.
The discovery of string landscape [36, 37] support
this idea.

3. Tuning mechanisms. This category introduces a scalar
field which can reduce the DE energy density. Some
models of this category result in vanishing Newton’s
constant [38, 39].

4. Modified gravity. By modifying the left side of Einstein’s
field equations, modified gravity can also explain cosmic
acceleration. There are a large number of modified
gravity models, such as unimodular gravity [40, 41] and
massive gravity [42].

5. Quantum gravity. Making use of the Hartle-Hawking
wave function of the Universe [43], a small DE energy
density is predicted [44].

Afterward, some new theoretical DE models were proposed.
Therefore, three new categories can be added [18]:

6. Holographic principle. This is the Key point of this
review.

7. Back-reaction of gravity. Under the frame of general
relativity, inhomogeneities of the Universe can backreact
on the FLRW background [45].

8. Phenomenological models. It is argued that DE can be
described by scalar fields with various potentials or
kinetic terms [14].

In this paper, we just focus on the sixth category, i.e.
holographic principle.

3. Original holographic dark energy model

In this section, we introduce how to apply the HP to the DE
Problem.

3.1. General formula of HDE energy density

Now let us take into account the Universe with a character-
istic length scale L. Based on the HP, one can conclude that
the DE energy density ρde can be described by some physical
quantities on the boundary of the Universe. Obviously, one
can only use the reduced Planck mass Mp and the cosmolo-
gical length scale L to construct ρde. Making use of the
dimensional analysis, we can obtain
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4

2
2 2

3
4r = + + + ¼- -

where C1, C2, C3 are dimensionless constant parameters. Note
that the first term is 10120 times larger than the cosmological
observations [12], so this term should be deleted (For a more

theoretical analysis, see [46]). Moreover, compared with the
second term, the third and the other terms are negligible, so
these terms should be deleted, too.

Therefore, the expression of ρde can be written as

( )C M L3 , 8pde
2 2 2r = -

where C is the dimensionless constant parameter, too. It must
be stressed that equation (8) is the general formula of HDE
energy density. In other words, all the DE models of the sixth
category can give an energy density form that is the same as
equation (8).

3.2. The original HDE model

After deriving the general formula of the HDE energy density,
one needs to choose the specific form of the characteristic
length scale L. The simplest choice, i.e. the Hubble scale
L= 1/H [47, 48], will yield a wrong EoS of DE [49].
Besides, the particle horizon is not a good choice either,
because it cannot yield cosmic acceleration.

In 2004, Li suggested that the characteristic length scale
L should be chosen as the future event horizon [21]
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This is the first HDE model that can yield cosmic
acceleration, So we call it the original HDE (OHDE) model.

For the OHDE model, the Friedmann equation satisfies
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where M H3c P
2 2r º is the critical density of the Universe.

Taking the derivative of Ωde, and making use of equation (9),
one can obtain
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where the prime denotes derivative with respect to aln . From
equation (10), we have
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This equation describes the dynamical evolution of the
OHDE model. Since 0<Ωde< 1, dΩde/dz is always nega-
tive, namely the fraction density of HDE always increases
along with redshift z→−1. Based on equations (15) and (11),
one can obtain the redshift evolution of Hubble parameter H
(z) of the OHDE model.

3.3. Important properties of the OHDE model

• EoS

Energy conservation tells us that

( )3 0, 16m mr r¢ + =

( ) ( )w3 1 0. 17de der r¢ + + =

Based on equations (8) and (17), one can obtain the EoS
of the OHDE model

( )w
C

1

3

2

3
. 18de= - -

W

In the early Universe with Ωde= 1, w;−1/3, thus
Ωde∼ a−2. In the late Universe with Ωde; 1, w;−1/3− 2/
3C, thus cosmic acceleration will be yielded as long as C> 0.
Moreover, if C= 1, w=−1, thenHDE will be close to the
cosmological constant; if C> 1, w>−1, then HDE will be a
quintessence DE [50]; if C< 1, w<−1 thus HDE will be a
phantom DE [51–53].

• The Coincidence Problem

The coincidence problem is equivalent to a problem of
why the ratio between the DE density and the radiation
density is so tiny at the beginning of the radiation-dominated
epoch [54].

Let us consider the inflation epoch, which has two main
components: the HDE and the inflation energy. Note that the
inflation energy is almost constant during the inflation epoch,
and then decayed into radiation after the inflation.

If the inflation energy scale is 1014 Gev, the ratio between
ρde and ρr is about 10

−52 [21]. During the inflation epoch, the
HDE is diluted as Ωde∼ a−2, this is equivalent to ( )Nexp 2-
with N= 60. This means that the OHDE model can explain
the coincidence problem, as long as the inflation epoch lasts
for 60 e-folds [55].

4. Theoretical motivations for the OHDE model

In addition to the dimensional analysis mentioned above,
some other theoretical motivations can also lead to the general
formula of HDE energy density. Here we review some related
research works.

4.1. Entanglement entropy

It is argued that vacuum entanglement energy associated with
the entanglement entropy of the Universe can be viewed as
the origin of DE [56]. In the quantum field theory, the
entanglement entropy of the vacuum with a horizon can be

written as
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where ñ is the dimensionless constant parameter,
R ah t

t

a

d
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¥ ¢ denotes the future event horizon, and l denotes
the ultraviolet cutoff from quantum gravity. The entanglement
energy satisfies
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where TEnt= 1/(2πRh) is the Gibbons–Hawking temperature.
Integrating equation (20), one can get
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where Ndof is the number of light fields present in the vacuum.
Thus the DE energy density is
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= , β∼ 0.3, Ndof∼ 102 and l∼ 1/Mp [57].

One can see that this DE energy density has the same form
with equation (8).

4.2. Holographic gas

As is known, a system that appears nonperturbative may be
described by weakly interacting quasi-particle excitations.
Moreover, it is argued that the quasi-particle excitations of
such a system may be described by a gas of holographic
particles [58], with modified degeneracy

( )w w k V M , 23A B
p
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where V is the volume of the system, w0, A, and B are
dimensionless constants. Note that with the temperature
T∝ V−1/3 and the entropy S∝ V2/3, one can obtain the
relationship B= (A+ 2)/3. Therefore, the corresponding
energy density of the system is
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For the Universe with a radius R, S M R8 p
2 2 2p= and

T= 1/(2πR), thus one can obtain
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It is clear that this DE energy density has the same form
as equation (8).

4.3. Casimir energy

As is well known, Casimir energy is a core prediction of
quantum field theory [59–62]. It is argued that the Casimir
energy in a static de Sitter space may be viewed as the origin
of DE [63, 64].
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The Casimir energy satisfies
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Making use of the heat kernel method with ζ function
regularization, It can be calculated as
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where L is the de Sitter radius, γ is the Euler constant and
( ) 1 2 3.48G¢ - - . Note that the dominant term scales as

E L lpCasimir
2~ , then the energy density scales as

M LpCasimir
2 2r ~ - , which is just the same as equation (8).

4.4. Entropic force

In 2010, Verlinde conjectured that gravity may be essential an
entropic force [65]. Based on this idea, [66] suggested that the
entropy change of the future event horizon should be con-
sidered together with the entropy change of the test holo-
graphic screen.

Let us consider a test particle with physical radial coor-
dinate R. Based on Verlinde’s proposal, the energy associated
with the future event horizon Rh satisfies

( )E N T R G, 29h h h h~ ~

where N R Gh h
2~ is the number of degrees of freedom on

the horizon, Th∼ 1/Rh is the Gibbons–Hawking temperature.
Note that the energy of the horizon induces a force to a test
particle of order Fh∼GEhm/R

2, which can be integrated to
obtain a potential
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R
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Using the standard argument leading to Newtonian cos-
mology, this potential term will show up in the Friedmann
equation as a DE component c M R3 p hde

2 2 2r = - . Again, this
energy density is the same asequation (8).

4.5. Action principle

Finally, we introduce how to derive the general formula of
HDE from the action principle [67].

Consider the action
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where g Na3- = , R denotes the Ricci scalar, and Sm
denotes the action of matter. λ(t) is a Lagrange multiplier,
which forces the cut-off in the energy density; in addition,
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the event horizon. After taking the variations of N, a, λ, L and
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Since L(a→∞ )= 0, aL is just the future event horizon.
Moreover, one can obtain the DE energy density
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In addition to the expression of equation (8), this DE
energy density has a new term

a2 4

l , which can be interpreted as
dark radiation [68].

5. OHDE model with dark sector interaction

The interaction between dark sectors is a hot topic in the field
of DE [69]. In this section, we introduce the research works
about the OHDE model with dark sector interaction.

5.1. Dynamical evolution

Consider the OHDE model with dark sector interaction in a
non-flat Universe, the first Friedmann equation is
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In addition, the energy density of DM and HDE satisfy
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where Q phenomenologically describes the interaction term.
It should be mentioned thatQ cannot be derived from the

first principle, and the most common form of Q is

( ) ( )Q H , 381 dm 2 der r= G + G

where Γ1, Γ2 are dimensionless constant parameters. For the
specific form of Q, three choices are often made in the pre-
vious literature, i.e. Γ2= 0, Γ1= 0 and Γ1= Γ2= Γ3, which
leads to three most common interaction form
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Some other interaction forms were also proposed, e.g.
Q=HΓρdmρde/(ρdm+ ρde) [70], Q H cdm de

11 2 1 2r r r= G x x x x+ -

[71], ( ) Q dm der r= G + [72], and so on.
Based on the energy conservation equations for all the

energy components in the Universe, we obtain,
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Substituting this expression of pde into equation (90), one
can get
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Note that equation (43) can give another derivative
equation of H and  deW
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Based on the equations (41) and (45), one can obtain
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These two equations describe the dynamical evolution of
the IHDE model in a non-flat Universe.

5.2. Equation of state

Then, we discuss the EoS w of the IHDE model. For sim-
plicity, we only consider the case of a flat Universe. Let us
take into account the interaction between matter and HDE,
then
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( ) ( ) H w Q3 1 . 49de der r+ + = -

Consider the ratio of energy densities [73]
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It should be mentioned that, if DE decays into pres-
sureless matter (i.e. Q> 0), it will yield a more negative w.

For the OHDE model, Equation (47) leads to
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Making use of the equations (54) and (53), one can
obtain
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[73] considered a interaction form Q= 3b2Hρc, then
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C

b
C2

3
1

8

81
, 57de0 de0 2

2W
-

W
< <⎜ ⎟

⎛
⎝

⎞
⎠

( )C
2

3 1
. 58de0

de0

de0
W < <

W
W -

are satisfied, one can get w<−1. In other words, the IHDE
model can accommodate a transition from a quintessence DE
to a phantom DE. This conclusion holds true for the case of a
Universe with spatial curvature [74].

5.3. Alleviation of coincidence problem

Now we discuss the coincidence problem under the frame of
HDE. For the OHDE model without DM/DE interaction,
equation (51) can be reduced to

( )r

x
w

d ln

d
3 , 59=

where x alnº . For the case of constant w, we get

( )r r a . 60w
0

3=

One can see that r∼O(1) only when t is around t0, so the
coincidence problem still exists for this case.

The inclusion of the DM/DE interaction can make a big
difference. For example, [75] choosing Q= Γρde, then get

( )r Hr w
r

r H
3

1

3
. 61= +

+ G⎛
⎝

⎞
⎠
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In addition, by choosing the Hubble scale 1/H as the
characteristic length scale L, one gets [75]

( )w
r

r H

1

3
. 62= -

+ G

Based on equations (61) and (62), one can obtain

( )r 0. 63=

This means that the coincidence problem can be solved
by appropriately choosing the interaction term Q and the
characteristic length scale L.

It should be mentioned that, for the case of the OHDE
model, adding the DM/DE interaction alone cannot remove
the coincidence problem completely. However, [76] demon-
strated that for the IHDE model with an appropriate inter-
acting term, setting r 0= will give a positive solution of r
that has a stable constant solution, whose value is close to the
current measured value. Therefore, the inclusion of DM/DE
interaction can ensure r varies with time slowly, thus greatly
alleviating the coincidence problem [77–79].

5.4. Generalized second law of thermodynamics

It is believed that there is a deep connection between GR and
thermodynamics [80–84]. In the following, we will discuss
the generalized second law of thermodynamics under the
frame of the IHDE model.

For an IHDE mode with an interaction term Q= Γρde,
one can define the effective EoS

( )w w
H

w
r H3

,
1

3
. 64mde

eff eff= +
G

= -
G

The continuity equations satisfy

( ) ( ) H w3 1 0, 65m m m
effr r+ + =

( ) ( ) H w3 1 0. 66de de
eff

der r+ + =

Moreover, the entropy of the Universe inside the future
event horizon takes the forms

( ) ( )S
T

E p Vd
1

d d , 67m m m= +

( ) ( )S
T

E p Vd
1

d d . 68de de de= +

Here the temperature T
L

1

2
=

p
, the volume V L4

3

3

= p ,

( )E
L

p w
4

3
, , 69m m m m m

3
effp

r r= =

( )E
L

p w
4

3
, . 70de

3

de de de
eff

de
p

r r= =

Note that the entropy of horizon is SL= πL2, so

· ( )S L Ld 2 d . 71L p=

The validity of generalized second law of thermo-
dynamics has been tested under the frame of the IHDE model.
For example, by adopting the parameters Ωde0= 0.73,
Ωk0= 0.01, C = 0.1 and b2= 0.2, Setare studied this topic
and found that [85]

( )

( )

x
S S S

M

H
q

H H

d

d

10.88
1482.88 167.42 1.33

, 72

m L
p

de

2

2

2 2

+ + =

´ - +
-

+⎛
⎝

⎞
⎠

where q is the deceleration parameter. If q� 8.85−H2/15.4,
then ( )S S S 0

x m L
d

d de+ + . Therefore, the generalized sec-
ond law of thermodynamics could be respected if the special
range of q is chosen.

6. Four types of holographic dark energy models

All the sections above only focus on the OHDE model. In
fact, there are four types of HDE models.

To show the differences among the four types of HDE
models, let us consider a universe that has DE and char-
acteristic length scale L. As pointed out by Cohen et al [46],
the energy density of this universe cannot exceed the energy
density of a black hole. Therefore, the IR cutoff (characteristic
length scale L) and UV cutoff (vacuum quantum zero point
energy Λ) should satisfy

 ( ) ( )L S , 733 3
BH

3 4L

where SBH is the black hole entropy. Making use of the
Bekenstein formula of black hole entropy SBH∝ A∝ L2, and
noting that vacuum energy density ρde=Λ4, one can derive

( )C M L3 . 74pde
2 2 2r = -

This is the core formula for HDE.
As mentioned above, the simplest choice, i.e. the Hubble

scale L= 1/H, can not yield cosmic acceleration. In the past
20 years, a lot of HDE models have been proposed. These
theoretical models can be divided into four categories: (1)
HDE models with the other characteristic length scale; (2)
HDE models with extended Hubble scale; (3) HDE models
with dark sector interaction; (4) HDE models with modified
black hole entropy. In this section, we will introduce these
four types of HDE models.

6.1. HDE models with other characteristic length scale

This type of HDE model chooses the other characteristic
length scale, which has nothing to do with the Hubble scale,
as the IR cutoff. It is clear that the OHDE model belongs to
this category. Another well-known HDE model of this cate-
gory is the agegraphic dark energy (ADE) model.

[86, 87] suggested that one can choose the time of the
Universe as the IR cutoff, which is the core idea of ADE
model.

The first version of ADE [86] adopted the physical time t
as the IR cutoff. But this version of ADE model cannot
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evolve from a sub-dominate component to a dominate
component. Soon after, a realistic model of ADE was pro-
posed [87]. It is suggested that one can adopt the conformal
time of the Universe as the IR cutoff. In this new version, the
energy density of ADE satisfies

( )
n M3

, 75
p

de

2 2

2
r

h
=

where η is the conformal time

( )t

a

a

a H

d d
. 76

2ò òh = =

The fractional energy density is

( )n

H
. 77de

2

2 2h
W =

The evolution equation of Ωde is

( ) ( )
n a

1 3
2

. 78de de de
deW¢ = W - W -

W
⎜ ⎟
⎛
⎝

⎞
⎠

In addition, the EoS of ADE is

( )w
n a

1
2

3
. 79de= - +

W

In a matter-dominated Universe, ah µ . Based on
equation (75), one can get ρde∝ 1/a. Based on the continuity
equation, one can get w=−2/3. Compare this result to
equation (79)), one obtains that,

( )n a

4
. 80de

2 2
W =

It is clear that the fractional energy density of ADE in the
matter-dominated era is determined. Therefore, there is no
coincidence problem in the ADE model.

For the studies of other HDE models of this category, see
[88, 89].

6.2. HDE models with extended Hubble scale

This type of HDE model chooses the combination of the
Hubble scale and its time derivatives as the IR cutoff.

A well-known HDE model of this category is the Ricci
dark energy (RDE) model [90, 91]. In the FLRW cosmology,
the Ricci scalar is

( )R H H
k

a
6 2 . 812

2
= - + +⎛

⎝
⎞
⎠

Adopting the Ricci curvature as the IR cutoff, one can
obtain the energy density of RDE

( )R H H
k

a16

3

8
2 . 82de

2
2

r
a
p

a
p

= - = + +⎛
⎝

⎞
⎠

Thus, the first Friedmann equation satisfies

( )

( )

H
G

k

H

x
H

8

3
e 1 e

1

2

d

d
2 , 83

m
x x2

0
3 2

2
2

p
r a

a

= + -

+ +

- -

⎜ ⎟
⎛
⎝

⎞
⎠

where x alnº . This equation can be written as

( )

( )

( )E a a a a f a
2

,

84

m k m
2

0
3

0
2

0
3

0
4 2a

a
= W + W +

-
W +- - - - - a

where f0 is an integration constant, which can be fixed by
using the condition E0= 1:

( )f 1
2

2
. 85k m0 0 0

a
= - W -

-
W

Based on equation (84), one can get

( )( )a f a
2

. 86mde 0
3

0
4 2a

a
W =

-
W +- - - a

In addition, the EoS of RDE satisfies

( ) ( )w
z

z
1

1

3

dln

d
. 87de= - +

+ W

If α= 1/2, RDE will behave as a cosmological constant
plus a DM. If 1/2� α< 1, RDE will behave as a quintes-
sence DE. If α< 1/2, RDE will start from a quintessence DE
and evolve to a phantom DE.

For the studies of other HDE models of this category, see
[92–96].

6.3. HDE models with dark sector interaction

This type of HDE model chooses the Hubble scale as the IR
cutoff, while the interaction between dark matter and dark
energy is taken into account.

In a non-flat Universe, the first Friedmann equation is

( )M H3 . 88p b r k
2 2

dm der r r r r= + + + +

After taking into account the interaction between dark
sectors, the energy density of DM and HDE satisfy

( ) H Q3 , 89dm dmr r+ =

( ) ( ) H w Q3 1 , 90de der r+ + = -

where Q describes the energy flow between dark matter and
dark energy.

If there is no energy flow between dark matter and dark
energy, i.e. Q= 0, choosing the Hubble scale as IR cutoff will
give a wrong EoS of HDE, which yields a universe without
cosmic acceleration. However, the introduction of dark sector
interaction can change the dynamical evolution equation of
HDE, as well as the EoS of HDE. Therefore, after adopting an
appropriate form of Q, choosing the Hubble scale as the IR
cutoff can also yield cosmic acceleration.

For more details about the HDE models with dark sector
interaction, see the review article [69] and the references
therein.
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6.4. HDE Models with modified black hole entropy

This type of HDE model chooses the Hubble scale as the IR
cutoff, while the formula of black hole entropy is modified.
The most popular HDE model in this category is the Tsallis
holographic dark Energy (THDE) model.

In [97], Tavayef et al proposed the THDE model. This
model is based on a modified entropy area relation, which is
suggested by Tsallis and Cirto [98],

( )S A , 91g=d
d

where δ is an unknown constant and γ is a non-additivity
parameter. Based on the holographic principle, one can derive
a relation among the system entropy S, the IR cutoff L and
UV cutoff Λ [99]

 ( ) ( )L S . 923 3 3 4L

Combining equations (91) and (92), one can obtain

 ( ( ) ) ( )L4 . 934 2 4g pL d d-

Note that Λ4 denotes the vacuum energy density. Based
on this inequality, the energy density of THDE can be written
as [97]

( )BL , 94de
2 4r = d-

where B is a constant model parameter. Moreover, [97]
proved that, for a flat FLRW universe filled by THDE and
pressureless matter, choosing the Hubble horizon as the IR
cutoff will yield cosmic acceleration.

In recent years, the THDE model has drawn a lot of
attention [100–105]. In addition to many theoretical
explorations and observational constraints, this model has
also been studied in various modified gravity theories, such as
Brans Dicke theory [106] and Brane cosmology [107].

It should be mentioned that there are some other theor-
etical attempts at the entropy-corrected HDE models, such as
the Barrow holographic dark energy [108–110], the Renyi
holographic dark energy [111, 112] and the Kaniadakis
holographic dark energy [113]. For the studies of other HDE
models of this category, see [114–117].

7. Hubble tension problem and holographic dark
energy

In the recent years, the Hubble tension problem has become
one of the biggest challenges of cosmology [118]. In this
section, we introduce the Hubble tension problem, as well as
the attempts to alleviate this problem under the framework
of HDE.

7.1. Hubble tension problem

Since the 21st century, it was widely believed that the sim-
plest cosmological model, i.e. the ΛCDM model, is most
favored by various astronomical observations. Therefore, the
ΛCDM model was also called the standard model of cos-
mology. However, in recent years, it is found that under the
framework of the ΛCDM model, the high redshift cosmic

microwave background (CMB) observations and the low
redshift cepheid observations will give very different mea-
surement results of the Hubble constant H0.

For example, under the framework of the ΛCDM model,
the Planck 2018 data, which is the last release from the
Planck satellite measurements of the CMB anisotropies,
gave H0= 67.4± 0.5 km s−1 Mpc−1 [119]. On the other
side, under the framework of the ΛCDM model, based on the
analysis of cepheids in 42 Type Ia supernova host galaxies,
Riess et al gave H0= 73.04± 1.04 km s−1 Mpc−1 [120]. It
is clear that these two measurement results of H0 have a very
big tension. It must be emphasized that the difference
between the H0 measurement results given by these two
observations has exceeded the 5σ confidence level (CL). In
other words, the Hubble constant tension between the early
time and late time measurements of the Universe has
exceeded 5σ CL.

Therefore, there is an impossible triangle among the high
redshift CMB observations, the low redshift cepheid obser-
vations, and the ΛCDM model. In other words, at least one of
the three factors is wrong. If not due to the systematic errors of
the CMB and the cepheid observations, the Hubble constant
tension will reveal an exciting possibility: what we need is new
physics beyond the standard model of cosmology.

7.2. Alleviation of Hubble tension problem under the framework
of HDE

A lot of theoretical attempts have been made to alleviate the
Hubble tension problem [118], such as early dark energy
[121, 122], late dark energy [123, 124], modified gravity
[125, 126], sterile neutrino [127] and dark sector interaction
[128]. In this review, we only focus on one kind of late dark
energy, i.e. HDE.

Some literature has discussed the possibility of alleviat-
ing the Hubble tension problem under the framework of the
OHDE model. For example, [129] found that, after taking into
account the OHDE model and sterile neutrino, the combined
data of Planck 2015 + BAO + JLA + R16 will give
H0= 70.7± 1.1 km s−1 Mpc−1; for this case, the difference
with low redshift cepheid observations is reduced by 1.5σ. In
addition, [130] found that, based on the OHDE model, the
combined data of Planck 2018 + BAO + R19 gives
H0= 73.12± 1.14 km s−1 Mpc−1, which has no tension with
low redshift cepheid observations.

In addition, the case of Tsallis holographic dark energy
has also been studied. [131] found that, for this model, Planck
2018 + BAO + BBN + CC + Pantheon gives H0= 69.8±
1.8 km s−1 Mpc−1, which alleviates the Hubble tension at
1.5σ CL.

These studies show that the HDE model has the potential
to alleviate the Hubble tension problem.

8. Summary

As the most important principle of quantum gravity, HP has
the great potential to solve the DE problem. In this paper, we
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reviewed previous theoretical attempts at applying the HP to
the DE problem.

Based on the HP and the dimensional analysis, we gave
the general formula of HDE energy density, i.e.

C M L3 pde
2 2 2r = - . Then, we introduced the OHDE model,

which chooses the future event horizon as the characteristic
length scale. Next, we introduced various theoretical moti-
vations that can lead to the general formula of HDE. More-
over, we introduced the research works about the IHDE
models, which consider the interaction between dark sectors.
Moreover, we introduce all four types of HDE models that
originate from HP, including (1) HDE models with other
characteristic length scale; (2) HDE models with extended
Hubble scale; (3) HDE models with dark sector interaction;
(4) HDE models with modified black hole entropy. Finally,
we introduce the well-known Hubble tension problem, as well
as the attempts to alleviate this problem under the framework
of HDE.

From the perspective of theory, the core formula of HDE
is obtained by combining the HP and the dimensional ana-
lysis, instead of adding a DE term into the Lagrangian.
Therefore, HDE remarkably differs from any other theory of
DE. From the perspective of observation, HDE can fit various
astronomical data well, and have the potential to alleviate the
Hubble tension problem. These features make HDE a very
competitive dark energy scenario.

Recent theoretical developments show that spacetime
itself may be emergent from the entanglement entropy [132,
133]. This discovery will bring new insight to the theoretical
explorations of HDE, as well as the theoretical studies of
applying the HP to cosmology [134, 135]. In addition, S.
Nojiri et al proved that the holographic approach can be used
to describe the early-time acceleration and the late-time
acceleration of our Universe in a unified manner [136]. For
more details, see [137, 138].
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