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Abstract
In this paper, we analyze thin-shell wormholes from two identical copies of charged static
cylindrically symmetric spacetimes using Visser’s ‘cut and paste’ approach under the influence
of f (R, T) gravity Harko, Lobo, Nojiri, and Odintsov (2011, Phys. Rev. D 84, 024020). In this
scenario, the modified Chaplygin gas supports the exotic matter in the shell which allows, one to
examine the dynamics of constructed wormholes. We utilize the junction condition to connect
the interior and exterior geometries across the hypersurface and calculate different components
of the Lanczos equation recently computed by Roza in Rosa (2021, Phy. Rev. D 103, 104069).
We analyze the stability of the thin-shell wormhole models under linear perturbations while
keeping the cylindrical symmetry and also examine the influence of charge on their stability. The
positive quantity of the second derivative of potential at the throat radius might be interpreted as
the stability criterion. We find both unstable and stable wormhole solutions for different
parameters included in the equation of state and specific forms of considered gravity and
illustrate them theoretically as well as graphically. We examine the impact of electric charge on
the stability region of a constructed wormhole, which suggests that a wormhole model with a
charge may exhibit more stable behavior compared to an uncharged system.

Keywords: wormholes, gravitation, mathematical and relativistic aspects of cosmology

(Some figures may appear in colour only in the online journal)

1. Introduction

The wormholes are solutions to field equations of Einstein’s
general relativity (GR) and other theories of gravity. They are
structural connections in spacetime that link two cosmos or
separate sectors of the Universe. Traversable Lorentzian
wormholes are geometric structures with a throat connecting
two areas of the identical universe or two different universes.
The Schwarzschild or Lorentzian wormholes, featuring the
boundary on the wormhole mouth, were the inaugural ideas
put forth by Einstein and Rosen in [1]. The wormholes should
always be laced with exotic stuff that deviates from the null
energy requirement in the paradigm of GR. By choosing the
wormhole’s geometry appropriately, it is possible to reduce
the amount of exotic material required across the throat to any
desired level, however, it might result in high stresses near the
throat. After Morris and Thorne's [2] ground-breaking

mathematical investigation in 1988, this topic has acquired a
lot of attention. Although a lot of investigation has been done
on black holes, particularly to look for signs of a super-
massive black hole at the galactic core. This situation is just
significantly altered by the new revelation that thin-shell
wormholes can replicate recent times demonstrated gravita-
tional ring-down post-merger waves, which were previously
thought to be restricted to the black hole horizon. As a con-
sequence, analysis of the stability of thin-shell wormholes is
highly critical. Visser’s concept was intended to contain
exotic material in a very small area known as a thin shell.
Thus, geometrically two manifolds must be cut and pasted
together to create a novel manifold that is geodesically
comprehensive and contains a shell inserted in the linking
region. Within the shell seems to be the unusual material
necessary for their preservation, while elsewhere on this shell
ordinary stuff may be found. There have been numerous
investigations that study the stability of thin-shell wormholes
against perturbations while maintaining the inherent
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symmetries. To establish a thin-shell wormhole, two
Schwarzschild models were joined and this was the subject of
linearized stability investigation. The researchers investigated
the stability of radially perturbed cylindrically symmetrical
traversable wormholes featuring the linearized equation of
state at the throat [3, 4]. The f (R) gravitational paradigm is a
major modification of the Einstein–Hilbert action, where R is
a Ricci scalar. Investigating the Universe’s expansion and
evolution, particularly its early-time inflation and late-time
growth, has been extensively studied in this gravitational
theory [5–13]. Even if geometry and matter are on the same
level, Einstein’s GR does not account for any conceivable
implications associated with a non-minimal connection
between geometry and matter. Harko and his collaborators
developed f (R, Lm) gravity [14] and f (R, T) [15] theory of
gravitation, where R is the Ricci curvature invariant, Lm, i.e.
matter lagrangian density and T represents the trace of the
stress-energy tensor. Exotic imperfect materials or quantum
fluctuations may influence the decision-making process of the
stress-energy tensor in the action of f (R, T) gravity. While
matter and gravity are inextricably linked, this gravity fra-
mework may address the source element. The sample parti-
cle’s path deviates from its geodesic trajectory as a result,
which may have significant ramifications for cosmic studies.
Additionally, modified gravity theories have been used to
examine wormhole geometries. The study of thermo-
dynamics, the enigmatic growth of the Universe, gravitational
wave phenomena, cosmological packed structures, and
dynamical in/stability restrictions with and without electro-
magnetic interactions have all been done using this expanded
form of gravitational theory [16–30].

In any scientific framework, the methods to treat dis-
continuous surface areas and their characteristics should be
taken into account. The junction conditions may establish a
link between the compact structural system of the surface and
discontinuities of the physical quantity. At the hypersurface
Σ, the matching conditions are usually needed to put together
strong connectivity across the interior and exterior space-time
regions. The most significant contribution to academic fra-
meworks was provided by Lanczos [31], who developed the
concept of gravitational matching conditions for a particular
hypersurface within the context of GR. These matching
conditions were then employed to locate correspondences
between several spacetimes. In modified gravity theories,
each gravity theory includes its distinctive system of match-
ing conditions that are produced from their equations of
motion to address discontinuous surface areas, which incor-
porate various essential properties (see for more information
[32–37]). However, in such gravity theories, the need for the
exotic matter stuff may be removed since the matter that
makes up the geometry of the wormhole fits the energy
conditions and higher-order components of scalar curvature
make it easier to create wormholes [38–41]. The influence of
traversable as well as non-traversable wormholes by choosing
numerous types of functions, varying instances by adjusting
parametric values of the considered models, and noting how
wormhole symmetry performs in these scenarios have all
been comprehensively studied in [42–47]. The increasing

growth of the cosmos breaches the strong energy restriction in
GR. Furthermore, modified gravity theories such as f (R, T)
gravity have piqued the curiosity of academics, primarily
even though they claim to provide a sliver of usable empirical
support for faster cosmic evolution [48–51]. Bhatti et al
[52–54] studied the in/stability of different compact struc-
tures with and without electric charge to check the influence
of modified gravity theories by using some mathematical
techniques under various backgrounds. They [55–57] also
checked the relativistic effects upon compact objects and
studied the complexity of charged self-gravitating systems in
the background of various gravity theories.

Banerjee et al [58] examined wormhole geometries for
spherical symmetry and conformal Killing symmetry to
improve astrophysical relevance in f (R, T) gravity. Two cases
were studied: one with isotropic pressure matter sources,
which does not meet wormhole conditions, and the other with
an equation of state connecting pressure and density, using
phantom energy to violate the null energy condition. They
analyzed various physical properties, especially energy con-
ditions, confirming positive energy density from a static
observer’s perspective. Graphs supported their findings, and
they briefly discussed the volume integral quantifier’s role in
understanding exotic matter requirements for traversable
wormholes. Banerjee et al [59] studied static, spherically
symmetric wormholes supported by matter with isotropic
pressure in modified gravity theories. They used various
methods to construct solutions meeting wormhole criteria and
found examples where matter within the wormhole obeys all
energy conditions. They also proposed a transformation to
simplify field equations, obtaining more consistent results.
These findings suggest specific exact wormhole solutions
without exotic matter. The relativistic effects are studied by
many researchers with different fluid configurations in the
background of modified gravitational theories, one can see for
further details [41, 60–67].

The universe appears to be expanding more quickly than
previously thought, which means that the strong energy cri-
terion must be breached according to GR. There have been
several explanations put up for the situation that led to this
scenario. Chaplygin gas comprises among them, Chaplygin
was the pioneer to establish this model as a model for aero-
dynamic investigations. It is a perfect fluid with the equation
of state ρp= A, where A has a positive constant value.
Regardless of the situation of unusual matter stuff, the Cha-
plygin gas [68] has the feature that the squared sound velocity
is indeed positive. Although it had been proposed for phe-
nomenological purposes, rather than cosmological, reasons,
this equation of state can be derived via string theory. The
notions of exotic stuff that are relevant to astrophysics, for the
development of wormholes have recently been taken into
account. Some authors have studied the wormholes sustained
by phantom energy, utilizing the equation of state p= ωρ,
where the parameter involved in this equation of state satisfies
the inequality ω<−1. The exotic matter continues to facil-
itate a wormhole of the Morris-Thorne form in [2]. A gen-
eralized Chaplygin gas [69, 70] with an equation of state
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p A= -
rg

having two parameters A and γ with conditions

A> 0 as well as 0< γ� 1. Therefore, the wormhole metric
might have been linked to an exterior vacuum metric to
maintain the exotic matter inside a relatively limited zone of
space. However, in some kind of a thin-shell wormhole,
exotic stuff could be constrained from the outset to the shell at
the connecting region, which has already been accomplished
with the primordial Chaplygin gas (γ= 1) in [71]. Conse-
quently, a modified Chaplygin gas model has been put forth
in [68] with the paradigm of Friedmann Robertson Walker
cosmos. This approach is constructed on the equation of state
given below and incorporates an introductory radiation era:
p A Br= -

rg
. It contains three parameters A, B, and γ, where

γ is a constant parameter. This equation of state easily reduces
to the form p= Aρ, for B= 0 and original generalized Cha-
plygin gas model p B= -

rg
for the case A= 0. The current

investigation aims to examine charged cylindrically symmetric
thin-shell wormholes incorporating the matter in the form of a
modified Chaplygin gas under the influence of f (R, T) gravity.
In the geometrical formulation of this gravitational theory, we
keep investigating the stability of charged static wormhole
solutions across symmetry-preserving perturbations. We uti-
lized the ‘cut and paste’ methodology and found both stable
and unstable wormhole solutions for the minimally coupled
with logarithmic corrections in curvature f (R, T) model, i.e.

f R T R R ln T, 1 R2
2( )( )( ) x b l= + + +

h
. In this context,

the equation of motion at separation hypersurface is obtained
by just replacing the derivative of the function f (R, T), i.e. the
fRR and fRT, in the general equation provided by Rosa [35] to
analyze the construction of thin shell wormhole models and
their stable or unstable behavior. The effects of mass, the
equation of state parameter, and charge are investigated for the
stability of statically charged wormhole models for the greatest
possible range of involved parameters. In the framework of this
gravity model under consideration, we analyze the stable and
unstable static-charged cylindrically symmetric wormhole
solutions.

The article is structured as follows: section 2 contains a
description of the notations and suppositions that may be
utilized in this study. We provide the generalized version of
the action integral for f (R, T) gravity and calculate the dif-
ferent components of Lanzos’s equations for thin cylindrical
shell matching in the geometric presentation of the theory in
the same section. Around the electrically charged static
solution at the wormhole throat, the stability analysis is
conducted in section 3. The same section will address some
additional elements that affect the stability of the investigated
fluid configurations and also discuss the constraint formula
for wormholes and the minimally associated gravity model. In
a corresponding segment, a graphic illustration of the stable/
unstable behavior of the studied electrically charged static
cylindrically symmetric wormhole formations is shown. We
employ the presumption that G= C= 1, where C stands for
the speed of light and G for the gravitational constant at
which all particles gravitate. The discussions and concluding
remarks are briefly summarized in the final section 4.

2. Charged wormhole models in geometric
representation of f (R, T) Gravity

The basic f (R, T) paradigm and its associated Lanczos
equation at separation hypersurface for the construction of
wormholes under a specific equation of state will be covered
in this section. The following is the generic action of f (R, T)
gravitational theory:

g f R T x g x
1

2
, d d , 1f R T m, 2

4 4 { }( ) ( )( ) ò òk
= - + -

in this form of generic action, m is the matter lagrangian also
κ is the coupling constant, i.e. κ2= G

C

8
4

p , here G and C
demonstrate the gravitational constant and the speed of light,
respectively. Furthermore, g and T represent the determinants
of the metric gbi defined in terms of x b accompanied by a
signature , , ,( )- + + + as well as the trace of the stress-energy
tensor Tbi, respectively. Also, f is clearly defined as a generic
function of the Ricci curvature invariant and the trace of the
stress-energy tensor. In this study we will be used, the Latin
indices which cover the range of {0, 1, 2, 3}. We imagine an
electrically charged static cylindrically symmetric space-time
that has a charged thin cylindrical shell at the junction of the
interior and exterior regions. It also assumes that the fluid
stress-energy tensor is ideal, i.e. p pdiag , , z( )r=hd q ,
where ρ and pf, pz are surface energy density as well as the
surface pressure on the thin shell. The following is a possible
formulation for the general static cylindrically symmetric
solution under the influence of electric charge:

s r t r r r zd d d d d , 22 2 1 2 2 2 2 2( ) ( ) ( ) ( )f x= - + + +- 
here, r r .M

r

Q

r
2 2 4 4 2

2 2( )( ) x= - +
x x

 Thus, the coordinate con-

ditions for this considered geometry may turn out:
−∞< t<∞, rä [0, ∞], −∞< z<∞, 0� f� 2π. Here
M andQ stand for the total mass and charge parameters,
respectively, also the coefficient of metric

3
x = -L , i.e. Λ is

the cosmological constant. The Darmois-Israel approach and
a few other crucial factors in examined gravity are used to
create traversable wormholes in perfect fluid f (R, T) grav-
itational theory. We choose a radius ‘a’ greater than the radius
rh of the event horizon to avoid singularity and the existence
of horizons. The area divides into two copies   with r� a
as follows: x t r z r a, , , ,b [ ( ) ]f= =  in order to
construct a new manifold using the formula   ⋃= + -,
one may place them on the hypersurface Σ as ρ±= r− a= 0.
The exterior and interior manifolds are represented here by
superscript plus and minus signs,  + and  -, respectively.
If this construction meets the flare-out requirements, the
manifold subsequently creates a wormhole with several pie-
ces connected by a radius ‘a’, where ‘a’ represents the throat
radius. With coordinates of y η= (τ, f, z), and boundary
surface is assumed to be time-like. Greek indices are also
offered, which have values between {0, 2, 3}. Thus separation
hypersurface’s intrinsic metric, at Σ throughout the throat, has
the following form:

s a zd d d d . 32 2 2 2 2 2( )( ) ( )t t f x= - + +

3
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The radius at which the throat is located can be described by
the physical quantity a(τ), where τ represents the appropriate
time over the separation hypersurface and a stands for each
partial manifold. We defined a unit normal-vector, i.e. nc at
hypersurface Σ which is represented in the direction of the
interior to exterior space. As a result, f (x b(y η))= 0 can be
used to represent the separation hypersurface parametric
equation. Using this parametric equation, the nc to the
hypersurface can be described as follows:

n
f

g f f

f

x
g

f

x

f

x
, 4c

c

bi
b i

c
bi

b i

,

, ,

1
2

( )=  = 
¶
¶

¶
¶

¶
¶


-

where nc denotes the unit normal in covariant format,
implying that n e 0c c[ ] [ ]= =h by definition. Consequently,
we conceived a unit four-vector for charged static cylin-
drically symmetric space-time which can be portrayed as:

n a
a

, , 0, 0 . 5c

2⎛

⎝
⎜

⎞

⎠
⎟  ( )=  -

+ 


The dot represents the derivative with respect to the proper
time ‘τ’ all across the analysis of the whole document. For
sub-manifolds, the first and second fundamental forms at
hypersurface can be defined as:

h g e e g
x

y

x

y
, 6bi

b i
bi

b i

( )= =
¶
¶

¶
¶hd h d h d



K n
x

y y

x

y

x

y
, 7c

c

bi
c

b i2

⎜ ⎟
⎛
⎝

⎞
⎠

( )= -
¶
¶ ¶

+ G
¶
¶

¶
¶hd h d h d

    

where xb= (t, r, f, z) and bi
cG are non-zero Christoffel sym-

bols of (1). Thus the computation of hhd
 and Khd

 for metrics in
equation (2) are as follows:

h a
a

1 0 0
0 0
0 0

. 82

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
x

=
-

hd


K
a

a
K a a

K K

2

2
, ,

, 9zz

2

2

2




( ̈ ́)

( )x

=
+

+
=  +

=

tt ff

ff

 

 






where a prime ( )¢ exhibits a derivative with respect to ‘r’.
Utilizing the definition as: K K K[ ] = -hd hd hd

+ -, equation (11)
yields:

K
a

a
K a a

K K

2
, 2 ,

. 10zz

2

2

2


[ ] ( )̈ [ ]

[ ] [ ] ( )x

= -
¢ +

+
= +

=

tt ff

ff






Using the equation (9) and the constraint K 0[ ] =h
h , we may

obtain:

a
a

a
2

2
. 112̈ ( ) ( )= -

¢
- +

 

The Ricci scalar invariant may be expressed as:

R
r r

r

4 2
. 12

2

2
( )=

 + ¢ +  

Furthermore, the updated gravitational field equation across Σ
under the assumption of perfect fluid f (R, T) theory of gravity
is determined as follows:

f

T
h n

f

R R
R

f

R T
T

f

R
K

8

.

13

c
c c

2 2




⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

[ ] [ ]

[ ]
( )

p +
¶
¶

=
¶
¶ ¶

¶ +
¶

¶ ¶
¶

-
¶
¶

hd hd

hd



We continue our systematic investigation by assuming the
intrinsic stress-energy tensor, i.e. hd whose diagonal entities
produce surface energy density (ρ) and surface pressures (pf,
and pz). Here, hηδ and [Kηδ] both represent the first and sec-
ond fundamental form, respectively, at Σ, also ò has fixed real
constant numeric values. Next, we define an alternative
expression for the jumping across two different physical
values Y over the hypersurface Σ: Y Y Y .[ ] ∣ ∣= -+

S
-

S
Additionally, utilizing the values of equations (5), (8), (10)
and (12) in equation (13), may yield the components of ρ and
p at throat radius a as:

14

a

a

a

f

R R a

a a

a

f

R T

T

a

2

8

2

8

4 2

,

f

R

f

T

f

T
2

2

2 2

2

2

⎟

⎜ ⎟
⎛

⎝
⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎞
⎠





( )

( )

( ̈ )
r

p

x

p
=-

+ ¢

+ +
-

+

+

´
¶

¶ ¶
¶
¶

 + ¢ +

+
¶

¶ ¶
¶
¶

¶
¶

¶
¶

¶
¶






  
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p
a a a

f

R R a

a a

a

f

R T

T

a

8

2

8

4 2
,

f

R

f

T

f

T

2 2

2 2

2

2

⎟⎜ ⎜ ⎟
⎛
⎝

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎞

⎠

 

( )

( )

p

x

p
=

+

+
+

+

+

´
¶

¶ ¶
¶
¶

 + ¢ + +
¶

¶ ¶
¶
¶

¶
¶

¶
¶

¶
¶

 

  

in this study p= pf= pz. Here, it is illustrated how the thin
shell model relates to a charged static cylindrically symmetric
matching at the hypersurface. For f (R, T) gravity, the first and
second fundamental forms must be continuous. Conse-
quently, the six key equations give the complete set of
matching conditions for the f (R, T) gravity in the generalized
form of matching to a narrow shell over separation hyper-
surface Σ in geometrical representation, which Rosa’s
recently established in [35] as:

16

R h

K T

f

T

f

R
K

n
f

R R
R

f

R T
T

0, 0,

0, 0,

8 ,

0.c
c c

2 2



⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

( )

[ ] [ ]
[ ] [ ]

[ ]

[ ] [ ]

p

= =
= =

+
¶
¶

= -
¶
¶

¶
¶ ¶

¶ +
¶

¶ ¶
¶ =

hd

hd hd

In this charged cylindrically symmetric thin shell situation,
aforementioned first five matching conditions criteria
equations must met, namely: h K R0, 0, 0,[ ] [ ] [ ]= = =hd

T 0,[ ] = and n R T 0.c f

R R c
f

R T c
2 2( )[ ] [ ]¶ + ¶ =¶

¶ ¶
¶

¶ ¶
Additionally, by

plugging the values of equation (11) in (14), we may
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determine the expression

a

a

a f

R R a

a a

a

f

R T

T

a

2

8

2

8

4 2

.

17

f

R a

f

T

f

T

2

2 2

2

2 2 2

2

2

⎜ ⎜ ⎟

⎟

⎛

⎝
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎞
⎠







( )
( )
( )( )

( )

r
p

x

p

=-
- - + + ¢

+ +

-
+

+

¶
¶ ¶

¶
¶

 + ¢ +

+
¶

¶ ¶
¶
¶

¶
¶

¢

¶
¶

¶
¶

 



   



While improving equation (17) as well as making use of the
notion that the trace of the extrinsic curvature on thin shell is
K= 0, i.e. K K K Kz

z= + +h
h

t
t

f
f , and since K Kz

z = f
f, it can

be put as K K K2= +t
t

f
f. Since the matching condition

mentioned as a second expression in equation (16) is [K]= 0,
consequently equation (17), simplifies as

18

a

a

a

f

R R a

a a

a

f

R T

T

a

4

8

2

8

4 2
.

f

R

f

T

f

T

2 2

2 2

2

2

⎟⎜ ⎜ ⎟
⎛
⎝

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎞

⎠

 

( )

( )

r
p

x

p
=-

+

+
-

+

+

´
¶

¶ ¶
¶
¶

 + ¢ + +
¶

¶ ¶
¶
¶

¶
¶

¶
¶

¶
¶

 

  

The equation above demonstrates unequivocally that this is
a real scenario since the existence of exotic stuff in
wormhole throats is traced by ρ< 0. Astashenok [72],
added that the equation of state would develop a stable
configuration under modified gravity theories, i.e. f (R), f (R,
T) gravities. Consequently, stable model construction and
dynamical equilibrium may be achieved via various
equations of state. A generalized Chaplygin gas [69] with
the equation of state p A= -

rg
, two parameters A and γ, and

constraints A> 0 and 0< γ� 1. There, the wormhole
metric may have been coupled to an outside vacuum metric
to keep the unusual matter contained inside a relatively
small zone of space. Furthermore, novel material may be
limited from the start to the shell at the connection sector in
some form of the thin-shell wormhole, as has previously
been achieved with the primordial Chaplygin gas (γ= 1) in
[71]. As a result, a modified Chaplygin gas scenario with
the Friedmann Robertson Walker cosmos has been pro-
posed in [68]. This method is based on the equation of state
presented below and includes an initial radiation era:

p A
B

. 19( )r
r

= -
g

It has three parameters: A, B, and γ, where γ is an arbitrary
constant. This equation of state is easily reduced to the form
p= Aρ, for B= 0 and the classic generalized Chaplygin gas
model p B= -

rg
for the case A= 0. The proposed study

intends to investigate charged cylindrically symmetric thin-
shell wormholes containing matter in the form of a modified
Chaplygin gas under the effect of modified gravity.

3. f (R, T) model and constraint equation

Throughout this sector, the stability of static cylindrically
symmetric wormhole solutions underneath the effect of
electric charge will be analyzed. This includes evaluating the
potential function (V ) as well as its first and second deriva-
tives to study the stability across the throat radius a0. It is a
key point to keep in mind that the subscript ‘0’ denotes that
the quantity under consideration is calculated at the position
of equilibrium. In this study, we will examine the charged
static cylindrically symmetric thin shell wormhole under
specific f (R, T) gravity scenarios having realistic equations of
state. A relativistic gravity model comprises variables that
have altered and are in line with the facts at hand. The
modified gravity theories are therefore investigated in terms
of their cosmological feasibility to retrieve a continuous
matter dominant period, fulfill solar system tests, and con-
struct stable higher curvature structures capable of reprodu-
cing the conventional GR. As a result, considering any option
of generic f in the context of f (R, T) gravitational theory, one
may acquire a variety of theoretical models that correlate to
various matter models, based on the characteristics of the
matter origin. Consequently, the general f (R, T) gravitational
function can be portrayed in a variety of ways:

• In the first instance of a f (R, T) modified theoretical
gravity model, let us suppose that the function f (R, T) is
defined as f (R, T)= R+ 2f (T), while f (T) is a freely
chosen function of the trace of the matter’s stress-energy
tensor.

• One next looks at the situation for an arbitrary matter
source when the function f is defined as f (R, T)=
f1(R)+ f2(T), where f1 and f2 are arbitrary functions of
Ricci curvature invariant R and trace of stress-energy
tensor T, respectively.

• One may also define the action for an arbitrary matter
source of f (R, T) gravity being provided by f (R, T)=
f1(R)+ f2(R)f3(T) as the third type of theoretical model
scenario of generalized f (R, T) gravity, where fj, j= 1, 2,
3, are arbitrarily chosen features of the argument.

Let us now assume the scenario of modified gravity for the
minimally coupled f (R, T) model with logarithmic corrections
in curvature [72] which is worthwhile to study, i.e.

f R T R R
R

T, 1 ln . 201
2

2⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( ) ( )x b
h

l= + + +

Here, we consider a minimally coupled f (R, T) gravitational
model that deviates from Einstein’s theory of gravity by
effectively generalizing the f (R) theory. This gravitational
model might satisfy all local gravity criteria and be considered
a suitable tool for examining the stability investigation of
relativistic charged or uncharged compact structures. The
redial perturbation methodology is used to examine the
implications of the f (R, T) model under this study on the
development of charged static wormhole model geometry. In
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this model, the arbitrary constants ‘ξ1,’ ‘β’, and ‘λ’ are used.
Additionally, λT is thought to be the correction term to the

f (R, T) gravitational theory, whereas R ln1 R
1

2
2( )( )x b+

h
are

correction term to the f (R) theory. Using λ= 0 will simplify
our findings and diminish the influence of f (R, T) gravity.
Furthermore, GR can be quickly recovered by utilizing
ξ1= β= 0= λ. Without a doubt, we address the case in
which the stable and unstable behavior of the fluid under
consideration may be discussed. The following is the
presentation of the Ricci curvature invariant for studying
the structure of a charged static wormhole around the throat
radius:

R a
a a a a a

a

4 2
. 210

0
2

0 0 0 0

0
2

( ) ( ) ( ) ( ) ( )=
 + ¢ +  

Now, we calculate how the surface pressure and density of the
thin shell relate to each other over the radius a0, which results
in the formulae shown below. Thus, the algebraic expressions

equations (15) and (18) turn out:
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Figure 1. Graphs of V″(a0) relating to different values of mass parameter M= 1.3, 1.5, 1.7, and 2.0, which show the in/stability of our
constructed charged static cylindrically symmetric wormhole models provided with some fixed value of charge parameter Q.
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Let us consider the second derivative of the throat radius as a
basis for a detailed analysis as a a

a

1

2

d

d
2̈ = , also one may

introduce E a a2( ) = to make analysis ease, consequently
equation (11) yields

E a
E a

a a
a a

4 4
. 24⎛

⎝
⎞
⎠

( ) ( ) ( ) ( ) ( )¢ + = - + ¢ 

Applying integration, the equation above w.r.t. ‘a’ results in

E a a a a
a

a
. 252

0
0
4

4
( ) ( ) ( ) ( )= = - + 

An analytical expression for V(a) at thin shell written as

V a a . 262( ) ( )= -

In this scenario, the potential function is denoted by the
symbol V(a); as a result, the equation of V(a) provides the
whole dynamic behavior of traversable wormholes. Further-
more, in our instance, the expression for V(a) is presented as

V a a a
a

a
. 270

0
4

4
( ) ( ) ( ) ( )= - 

The potential function’s derivative might have the following
form:

V a a a
a

a

4
. 280

0
4

5
( ) ( ) ( ) ( )¢ = ¢ + 

The expression for a( )¢ may obtain from the equation (11) as

a
a

a
4

. 29( ) ( ) ( )¢ = - 

In our study, it is easy to confirm that V(a0)= 0. Additionally,
one may show that V a 00( )¢ = by utilizing equation (29) via
radial perturbation around a= a0. In the evaluation of the
potential at a0, we take the second derivative of the potential

V a a
a

a
20

. 300 0
0
2 0( ) ( ) ( ) ( ) =  - 

Figure 2. Schematic diagrams of stable and unstable behavior for static cylindrically symmetric wormhole models under the influence of
electric charge are shown by a modified Chaplygin gas with fixed value of equation of state parameter as γ= 0.44 and the correction
parameters to considered modified gravity λ ä (0.44 (blue), 0.55(brown), 0.69(red), 0.95(green), 1.0(orange)), in the panels (a), (b), and (c),
respectively. The solid plots illustrate static configurations with a throat radius of a0 that are stable solutions, whereas the dotted curves depict
the unstable behavior of electrically charged static wormholes with radial perturbations. The fundamental manifold’s horizon radius is greater
than the throat radius of the grey sectors, which indicates that the grey areas are unpredictable.
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The metric coefficient , its first and second derivatives at
a= a0 may be expressed as

a a
M

a

Q

a

4 4
, 310

2
0
2

0

2

2
0
2

( ) ( )x
x x

= - +

a a
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2

4 8
, 320

2
0
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2

2

2
0
3

( ) ( )x
x x

¢ = + -

a
M

a

Q

a
2

8 24
. 33

o
0

2
3

2

2
0
4

( ) ( )x
x x

 = - +

By combining equations (31) and (33) in (30), the required
outcomes are achieved as follows

V a
M

a

Q

a
18

72 56
. 340

2

0
3

2

2
0
4

( ) ( )x
x x

 = - + -

It follows that the condition V″(a0)> 0 must hold for a
wormhole having radius a= a0 to be stable. We substitute the
values of energy density and surface pressures for the thin

shell at a0 in EoS which enables us to conceive the constraint
equation. Also, we introduce the derivatives of our considered
gravitational model at the same stage, i.e. 1f

R
= +¶

¶

R a2 1 ln R
1 0 2 2( )( )( )x b+ +b

h
and f

T
l=¶

¶
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We obtained the concise form of constructed constraint
equation by plugging the values of metric coefficient as

a0( ) , its derivatives a a,0 0( ) ( )¢   and Ricci curvature

Figure 3. Schematic diagrams of stable and unstable behavior for static cylindrically symmetric wormhole models under the influence of
electric charge are shown by a modified Chaplygin gas with fixed value of equation of state parameter as γ= 0.77 and the correction
parameters to considered modified gravity λ ä (0.24 (blue), 0.35(brown), 0.59(red), 0.75(green), 0.9(orange)), in the panels (a), (b), and (c),
respectively. The solid plots illustrate static configurations with a throat radius of a0 that are stable solutions, whereas the dotted curves depict
the unstable behavior of electrically charged static wormholes with radial perturbations. The fundamental manifold’s horizon radius is greater
than the throat radius of the grey sectors, which indicates that the grey areas are unpredictable.
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invariant R(a0) in equation (35) for the charged static case in
f (R, T) gravity quadratic in R with logarithmic corrections in
curvature is obtained as

a

a B4 1 0. 36
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The Ricci curvature invariant R(a0) at throat a0 turn out:
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One may easily verify that the factor
f
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appears in equation (35) identically disappears after incorpor-
ating the value of metric coefficient a0( ) across the throat

radius and also consider the same notion that 0f

R T

2

=¶
¶ ¶

. The
viable throat radius may be determined using the aforemen-
tioned equation with different constants (ξ1, β, η, λ, ò, A, B,
and exponents ξ). Since V″(a0) determines whether we
possess an un/stable solution for a0 radius, we may illustrate
this solution via the schematic diagram.

3.1. Graphical analysis

Since the constraint equation is a complicated one, we used
graphs to show the charged cylindrically symmetric thin-shell
wormhole findings. We arrive at r 0h( ) = and r 0h( )¢ = ,
since the charged static solutions rely on critical factors. The
critical charge does indeed have a considerable impact on the
systems, even though we are working with charged thin-shell
wormhole solutions, its effects may be observed in this
situation. The solutions to these problems will now be

Figure 4. Schematic diagrams of stable and unstable behavior for static cylindrically symmetric wormhole models under the influence of
electric charge are shown by a modified Chaplygin gas with fixed value of equation of state parameters as A= 0, γ= 1 and the correction
parameters to considered modified gravity λ ä (0.14 (blue), 0.15(brown), 0.16(red), 0.19(green), 0.20(orange)), in the panels (a), (b), and (c),
respectively. The solid plots illustrate static configurations with a throat radius of a0 that are stable solutions, whereas the dotted curves depict
the unstable behavior of electrically charged static wormholes with radial perturbations. The fundamental manifold’s horizon radius is greater
than the throat radius of the grey sectors, which indicates that the grey areas are unpredictable.
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accumulated and examined. The potential function explains
both the unstable and stable structural system of thin-shell
wormhole models: if V″(a0)> 0 it specifies the stable beha-
vior of constructed models with solid lines, and V″(a0)< 0,
illustrates the unstable behavior with dotted lines, whereas
V″(a0)= 0, signifies the unpredictable behavior. The graphs
of V″(a0) relating to the varying parametric values of mass M
and charge density are subsequently used to show the stability
of our system. Also, we illustrate the stable and unstable
behavior of our constructed charged static cylindrically
symmetric wormhole models with the help of our established
constraint equation, consequently in this analysis potential
function plays a vital role. In figure 1, we analyze the stable
and unstable behavior of static thin-shell wormhole models
under consideration for different values of mass and charge.
The various EoS parameter (A, γ) and model parameters (ξ1,
β, η, λ) combinations are also examined in figures 2
through 4.

• The schematic diagram in panels (a) and (b), of figure 1
for different values of M= 1.3, 1.5, respectively,
demonstrate only unstable behavior, as the second
derivative of the potential function shows a negative
value, i.e. V″(a0)< 0.

• The graphs in panels (c) and (d) of figure 1 for different
values of M= 1.7, 2.0, respectively, show both stable
and unstable behavior as the second derivative of the
potential function demonstrates positive as well as
negative value, i.e. V″(a0)> 0 and V″(a0)< 0.

Our analysis explored different scenarios within the fra-
mework of modified Chaplygin gas and f (R, T) gravity,
varying parameters like charge Q, the gas exponent γ, and
correction factors. For specific parametric combinations, the
study found unstable solutions in the presence of charge and
examined how stable and unstable regions evolved with
changes with considered values of different parameters. The
results revealed distinct behaviors depending on the values of
Q and γ, demonstrating how these factors influenced the
stability of the solutions and the sizes of stable and unstable
regions within the wormhole geometries. In cases where the
charge approached 1 closely, two solutions were observed
within a limited range, with stable solutions being shorter and
wider. When the charge exceeded 1, two solutions emerged
for certain parametric values, with stability regions changing
with varying gas exponents. The study also noted that as the
charge influence increased, stable regions expanded, and grey
zones decreased as the gas exponent increased from 0.44 to 1.

Table 2. Static thin-shell wormhole models under the influence of electric charge with the widest possible parametric values of the model
when the modified Chaplygin gas exponent γ= 0.77.

0.44Q

M

∣ ∣ = 0.88Q

M

∣ ∣ = 1.11Q

M

∣ ∣ =

ξ1 (0.02, 0.05, 0.08, 0.09, 0.1) (0.02, 0.05, 0.08, 0.09, 0.1) (0.02, 0.05, 0.08, 0.09, 0.1)
β (0.20, 0.40, 0.60, 0.80, 1.0) (0.20, 0.40, 0.60, 0.80, 1.0) (0.20, 0.40, 0.60, 0.80, 1.0)
η (0.01, 0.02, 0.03, 0.04, 0.2) (0.01, 0.02, 0.03, 0.04, 0.2) (0.01, 0.02, 0.03, 0.04, 0.2)
λ (0.24, 0.35, 0.59, 0.75, 0.9) (0.24, 0.35, 0.59, 0.75, 0.9) (0.24, 0.35, 0.59, 0.75, 0.9)
A (0.13, 0.35, 0.57, 0.78, 1.0) (0.13, 0.35, 0.57, 0.78, 1.0) (0.13, 0.35, 0.57, 0.78, 1.0)

Table 3. Static thin-shell wormhole models under the influence of electric charge with widest possible parametric values of the model when
the modified Chaplygin gas exponent γ= 1 and parameter A= 0.

0.44Q

M

∣ ∣ = 0.88Q

M

∣ ∣ = 1.11Q

M

∣ ∣ =

ξ1 (0.02, 0.03, 0.04, 0.05, 0.06) (0.02, 0.03, 0.04, 0.05, 0.06) (0.02, 0.03, 0.04, 0.05, 0.06)
β (0.32, 0.44, 0.76, 0.98, 1.0) (0.32, 0.44, 0.76, 0.98, 1.0) (0.32, 0.44, 0.76, 0.98, 1.0)
η (0.01, 0.02, 0.04, 0.06, 0.09) (0.01, 0.02, 0.04, 0.06, 0.09) (0.01, 0.02, 0.04, 0.06, 0.09)
λ (0.14, 0.15, 0.16, 0.19, 0.20) (0.14, 0.15, 0.16, 0.19, 0.20) (0.14, 0.15, 0.16, 0.19, 0.20)

Table 1. Static thin-shell wormhole models under the influence of electric charge with the widest possible parametric values of the model
when the modified Chaplygin gas exponent γ= 0.44.

0.44Q

M

∣ ∣ = 0.88Q

M

∣ ∣ = 1.11Q

M

∣ ∣ =

ξ1 (0.05, 0.06, 0.07, 0.08, 0.09) (0.05, 0.06, 0.07, 0.08, 0.09) (0.05, 0.06, 0.07, 0.08, 0.09)
β (0.22, 0.44, 0.66, 0.88, 1.0) (0.22, 0.44, 0.66, 0.88, 1.0) (0.22, 0.44, 0.66, 0.88, 1.0)
η (0.04, 0.05, 0.06, 0.075, 1.0) (0.04, 0.05, 0.06, 0.075, 1.0) (0.04, 0.05, 0.06, 0.075, 1.0)
λ (0.44, 0.55, 0.69, 0.95, 1.0) (0.44, 0.55, 0.69, 0.95, 1.0) (0.44, 0.55, 0.69, 0.95, 1.0)
A (0.3, 0.5, 0.7, 0.8, 1.0) (0.3, 0.5, 0.7, 0.8, 1.0) (0.3, 0.5, 0.7, 0.8, 1.0)
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4. Summary and discussion

We examined the effects of f (R, T) gravity on the formulation
of wormholes and their stable or unstable behavior. The
matching conditions are used to correlate two space-times
around the Σ in the geometric representation of considered
gravity. Using the fundamental requirements of f (R, T)
gravity and thin shell formalizations, we have constructed a
charged static cylindrically symmetric wormhole model. For
examining the properties of thin shell material and behavior
on separation hypersurfaces, the Lanczos equation is extre-
mely helpful. This paper develops charged static cylindrical
thin shell wormhole models using the usual cut-and-paste
strategy for generic criteria. Consequently, we hypothesized
that isotropic perfect fluid accurately characterizes the matter
sector, indicating that modified Chaplygin gas supports matter
at the shell. It does so because it provides a credible expla-
nation for the Universe’s fast expansion and because it has
already been considered in earlier wormhole analysis.
Recently, the cosmology has become very interesting in this
kind of fluid. For an important gravitational f (R, T) model, we
conducted our analysis using logarithmic corrections in R.
With the help of some common software, we got some
astounding outcomes. In light of this, it is possible to compare
the results to those found in earlier studies with the funda-
mental Chaplygin gas [69].

In this analysis, the constraint equation seems to be
complicated, so we used graphs to show the findings
regarding our constructed wormhole models. The charge
shows the impact on the systems, as we are working with
charged thin-shell wormhole solutions, its effects may be
observed via graphs. The potential function explains both the
unstable and stable structural components of thin-shell
wormhole models: if V″(a0)> 0, it denotes the stable beha-
vior of constructed models, V″(a0)< 0 denotes the unstable
behavior, and V″(a0)= 0 denotes the unpredictable behavior.
The graphs of V″(a0) relating to the varying parametric values
of mass parameter M and charge density parameter are sub-
sequently used to show the stability of our system. Also, we
illustrate the stable and unstable behavior of our constructed
charged static cylindrically symmetric models with the help of
our established constraint equation, consequently in this
analysis potential function plays a vital role. In figure 1, we
analyze the stable and unstable behavior of our constructed
static models for different values of mass and charge. We
analyzed stable and unstable behavior from figures 2–4 which
is summarized as:

• For the assumption that 0� |Q|< 1, also |Q| is not very
near to 1 and M= 1, i.e. Q= 0.44 from panels (a) of
figures 2–4, only unstable solutions exist when the
qualities of the desired modified Chaplygin gas exponent
are γ= 0.33, 0.66, 1.0, respectively. It is also worth
noting that different values of the correction factor ξ1 of
the f (R, T) theory of gravity, as well as the parametric
values of correction factors in R2, influence the respective
areas shown in tables 1–3.

• We also achieve the non-physically significant sector
(grey zones). In this case, all unstable solutions are
shown by dotted lines which depart from a

M
0 to go closer

to AM

a0
as the gas exponent grows, while grey zones nearly

remain the same. We also accomplish the sector with no
physical significance (grey zones). In this situation, all
unstable solutions are portrayed by dot curves that move
away from a

M
0 to come closer to AM

a0
as the gas exponent

increases, and grey zones almost remain same during this
similar scenario.

• It follows that there will always be an unstable solution
area for an appropriate confined range of AM

a0
. The throat

radius a

M
0 decreases in magnitude as AM

a0
increases, and the

original manifold’s horizon radius r

M
h can be produced for

large values of AM

a0
. Consequently, in this case of

Q= 0.44, different curves exhibit nearly similar close-
ness to each other when different values of the modified
Chaplygin gas exponent γ= 0.44, 0.77, 1.0 are
evaluated.

• When |Q|≈ 1 and |Q| get very close value to 1, i.e.
Q= 0.88 and M= 1 from the panels (b) of figures 2–4,
one got two solutions for different values of parameters
which are illustrated in tables 1–3, for a restricted range
of AM

a0
, stable solutions are shorter as well as wider are

unstable ones, and also no solution appears beyond this
range.

• The solutions curves move away from AM

a0
and grey zones

get short portions with the increasing values of the gas
exponent in panels (b) and (c) of figures 2–4 but in panels
(a) of similar figures the grey zone almost remains the
same. For β= 0.66, 1.0, the observed stable regions are
greater as compared to β= 0.33.

• If |Q|> 1 and M= 1, there are two solutions for different
values of parameters for small values of AM

a0
, as shown in

tables 1–3. Interestingly, the ranges of AM

a0
for stable and

unstable curves change for varying values of γ which is
an exponent of modified Chaplygin gas. In this context,
the larger one is unstable whereas the smaller one is
stable, while no solution emerges outside of a confined
range of AM

a0
. For Q=1.11 from the panels (c) of figures 2–

4, we got two solutions: the shorter ones are stable, while
the larger ones are unstable. The solutions curves move
away from AM

a0
and grey zone depletion with the

increasing values of the gas exponent in panels (b) and
(c) of figures 2–4 but in panels (a) of similar figures the
grey zone almost remains the same. For γ= 0.44, 0.77,
the observed stable zones are smaller as compared
to γ= 1.

• In the scenario when γ= 0.44, 0.77, and 1.0, for
Q= 0.44, 0.88 and Q= 1.11 the solutions have the
almost same behavior. The stable solutions, however,
have bigger regions for Q= 0.88 than they do in this case
when Q= 1.11. It is important to note that in every one
of the above situations, the stable zones expand as the
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influence of charge rises and the grey zones shrink as the
gas exponent rises from 0.44 to 1.

Finally, One can note that the associated stable or unstable
solutions are affected by the values of parameters of the
correction terms in the R2 of the f (R, T) theory of gravity. As
a result, the gravitational model under consideration is
cosmologically feasible and meets the local gravity limita-
tions. It is also essential to emphasize that the grey sectors
have no physical significance and cannot show us anything
about wormhole solutions. In each case, if the relevant mass
and charge parametric values are specified for a certain
assumed functional form of f (R, T) gravity and constant
curvature R(a0), stable or unstable static solutions are always
obtained.
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