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Abstract
We study the particle dynamics around a black hole (BH) in f (Q) gravity. First, we investigate
the influence of the parameters of f (Q) gravity on the horizon structure of the BH, photon orbits
and the radius of the innermost stable circular orbit (ISCO) of massive particles. We further
study the effects of the parameters of f (Q) gravity on the shadow cast by the BH. Moreover, we
consider weak gravitational lensing using the general method, where we also explore the
deflection angle of light rays around the BH in f (Q) gravity in uniform and nonuniform plasma
mediums.
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1. Introduction

General relativity (GR) was proposed by Einstein in 1915 as a
basic theory that explains the nature of the fundamental force
of gravity. The Einstein theory of gravity has successfully
passed the test based on different observations and experi-
ments on a macroscopic scale in the Universe. Applying GR
can be counted as an examination in the weak field regime to
test it within the solar system [1], and it has already been
done. The current scrutiny about gravitational waves [2] and
the shadows of M87* and SgrA* [3, 4] can be counted as an
examination of GR in the dexterous field regime. The theory
of GR during gravitational collapse has some limitations in

explaining the features of the singularity. Other issues that
cannot be well explained in the framework of GR include the
rotation curve of galaxies, cosmic acceleration, dark energy/
matter and the quantum theory of gravity. To resolve these
issues, it has been suggested by different authors that the
theory of GR should be amended.

Symmetric teleparallelism (ST) is a generalization of GR,
which is differentiated from GR based on different sets of
geometric postulates. The affine connection, Gmn

a , plays a vital
role in differentiating the theory of GR from ST. In GR, the
connection is supposed to be torsion-free and metric-compa-
tible, which means it is genuinely based on the Levi-Civita
connection. Metric-compatibility hypothesis in ST is exclu-
ded and in place of it Gmn

a becomes torsion-free and results
into a vanishing Riemann curvature tensor. As for how this
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connection fulfills these hypotheses, it can be understood as
becoming independent of the metric in a specific and arbitrary
manner. Along with the curvature and torsion of Gmn

a taken as
zero, only the non-metricity tensor amn is the non-trivial
object in ST which is responsible for defining the affine
geometry. Non-metricity scalar Q defines the action of ST and
can be calculated by using the non-metricity tensor, amn .
Famously, the action of ST to a boundary term has a close
approximation to the Einstein–Hilbert action of GR [5–9].
Therefore, the geometric description of symmetric teleparallel
gravity (STG) is different from GR. Specifically, it can be
shown that the appearance of only affine connection as a
boundary term in the action is non-physical. In short, the field
equations are totally independent of the choice of connection,
and any connection having compatibility with the STG can be
chosen in the field equations. Thus the physical degree of
freedom is purely metric-dependent and any sort of connec-
tion does not hold any form of physical information.

Changes may occur while taking the generalizations to
the more generic theories which are quadratic in the non-
metricity tensor [10], or an expansion of STG [11]. In this
manuscript, we are interested in the non-linear extension
defined by the action: ò -x g f Qd4 ( ) [5], where f (Q) shows
the prior arbitrary function of Q. This theory not only
possesses non-equivalence to f (R) gravity, but also
considers the degree of freedom based on the affine connec-
tion. The dependence on Gmn

a should not be further absorbed
into a boundary term in the action. It can be expected that the
connection will influence the metric defining the gravity.
Against the claim present in the literature [12, 13], we work
with the realization of this expectation [14] by studying the
most common version of static and spherically symmetric
spacetimes incorporated in the f (Q) theory of gravity.

Test particle motion can be studied as a beneficial tool to
examine the metric-based theories defining gravity as a
spacetime structure. The impacts of the spacetime curvature
and gravitational field parameters on the particle motion have
been extensively studied in the literature [15–30]. Analyzing
the motion of test particles having non-vanishing electric and
magnetic charge may lead towards a direct understanding of
the essence of the gravitational and electromagnetic field
around the gravitating compact object. Knowledge of photon
motion in the vicinity of compact objects, like BHs, is
essential for studying the gravitational lensing and shadows
cast by BHs and can enhance our understanding about dif-
ferent structures, like distant galaxies, in the Universe.
Gravitational lensing can be divided into two categories: (a)
strong gravitational lensing with the gravitational deflection
angle considerably larger than one and (b) weak gravitational
lensing with the gravitational deflection angle considerably
less than one. It is assumed that weak gravitational lensing
can be considered in investigating the cause of the current
accelerated expansion of the cosmos [31]. Astrophysically,
the observed bending of light and gravitational lensing fall in
the limit of weak gravitational lensing, i.e. with the deflection
angles very much less than one [32]. Therefore, the study
of weak gravitational lensing is even more fascinating.

Furthermore, it is of much interest to study the gravitational
lensing in a plasma medium as it is assumed that the light rays
in space always travel through such mediums (see more
examples [33–50] and other works [51–54]). In a field having
nonuniform plasma, photons travel along curved trajectories,
since plasma is a medium possessing a dispersive property,
having a permittivity tensor based on its density [55]. Photon
trajectory in a dispersive nonuniform plasma medium is based
on the frequency of the photon without any relation to the
gravity. The photon deflection in a nonuniform plasma with
the presence of gravity has been discussed in the literature
[56, 57]. This study considers a linear approximation with
two effects independently: (a) the deflection caused by the
gravitation in the vacuum and (b) the deflection caused as a
result of the non-homogeneity of the medium. The first effect
is neutral and the second effect is based upon the frequency of
photon in a dispersive medium and it approaches to zero in a
homogeneous medium. The study of the shadow cast by a BH
may provide useful insight on estimation of the value of the
spin parameter of a rotating BH [58–60]. The BH shadow
with and without plasma has been analysed for different BHs
in the literature [61–88].

Almost one hundred years after the initial observation of
gravitational light deflection, in 2019 a significant break-
through happened, when the Event Horizon Telescope (EHT)
Collaboration [4] accomplished a momentous feat by pre-
dicting an image of a BH. This achievement stemmed from
our understanding that, when light closely approaches a
BH, it shows observable deflection, occasionally traversing
circular orbits. This considerable light deflection, combined
with the intrinsic property that no light escapes from a BH,
leads to the hypothesis of a dark disk-like region inside the
celestial sphere, known as the BH shadow. The concept of
observing this shadow was first hypothesized in the year 2000
[60], which was later acknowledged by the authors in refer-
ence [89], through continuous numerical simulations, sug-
gesting the conclusion that successful observations could be
made at wavelengths near 1 mm using the technique of very
long baseline interferometry (VLBI). The recent remarkable
achievement of the EHT Collaboration motivated us to dee-
pen our understanding and provide explanations for both what
we can observe and what remains concealed [90].

In this work, we discuss the motion of particles, the BH
shadow and weak gravitational lensing in the presence of
plasma in f (Q) gravity to look at the effects of the parameters
present in f (Q) gravity and get some new insights about this
alternative theory of gravity. In section 2 we discuss the
basics of f (Q) gravity and particle dynamics. In section 2.1,
we study massive particle motion, and section 2.2 consists of
the discussion about the motion of massless particles around a
BH in f (Q) gravity. Section 3 contains a discussion of BH
shadows in f (Q) gravity. In section 4, we investigate weak
gravitational lensing (section 4.1 for uniform plasma, and
section 4.2 for nonuniform plasma) in the f (Q) theory of
gravity. In section 5, we present the conclusion for our study.
Throughout we use a system of units in which G= 1= c.
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2. Particle motion around a black hole in f (Q) gravity

In this study we consider the action for f (Q) gravity [14],
given by

ò l l= - + + +x
bmn

bmn
x

x
mn

mn
xS g x f Q R T Ld

1

2
, 1m

4 ⎡
⎣

⎤
⎦

( ) ( )

where the determinant of gμν is denoted by g, f (Q) is the
function of non-metricity Q, lx

bmn is the multiplier for the
Lagrangian, and Lm denotes the matter Lagrangian density.
The metric components in their complete format can be put in
the following form [14]

a
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where Mren is the renormalized mass which is given by

a a+ + - +M M c c M c c2 2 16 3 , 32
2

3
2

6 7≔ ( ( )) ( )ren

where the above equation satisfies the field equations of the
theory under consideration. The scale r1 can be initiated by
the change in the constant like  -c c M c r48 ln6 6

2
7 1( ), in a

desire to have a dimension-free argument in the logarithm

function. Here, we describe a new scale

m M c48 , 42
7≔ ( )

whose strength is characterized beyond the GR correction,
which is another new ‘BH charge’, also known as connection
hair. It is worth taking into consideration that the correction
terms could accelerate deviations from the Schwarzschild
solution for larger values of r. The correction term for the
logarithm will be determined by the command for radii upon
the renormalized Schwarzschild term, satisfying the relation

a m
>r r

M
ln

2
. 51 2

∣ ( )∣
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( )ren

All the f (Q) setup is based upon the model f (Q)=Q+ αQ2,
so α is a constant parameter with real values. In order to
produce results very close to the theory of GR, as an
ansatz we set |α|= 1. ci is a real integration constant. The
above equation (5) expresses the breakdown of the pertur-
bation theory at larger values of r. Metric perturbations are
small exclusively at the smaller values of r in comparison to
the background of the Schwarzschild spacetime. The
increasing and decreasing behavior of the horizon structure of
the BH in f (Q) gravity can be seen in figure 1 and is calcu-
lated using the condition gtt= f (r)= 0. It can be noticed that
one can retrieve the Schwarzschild case by replacing α= 0 in
equation (2). From figure 1, one can notice that the horizon

Figure 1. Dependence of the horizon structure on f (Q) parameters.
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radius for the f (Q) BH considered in the present study is
bigger than that of the Schwarzschild BH.

For the next two subsections we will discuss the massive
and massless particles motion in the vicinity of a BH in f (Q)
gravity:

2.1. Massive particle motion around a black hole in f (Q)
gravity

The trajectory of the test particle can be found by taking into
account the Lagrangian for the test particle having mass m in
the form given below

t
¢ = =mn

m n m
m

g u u u
x1

2
,

d

d
, 6( )

where τ represents an affine parameter, xμ denotes the
coordinates and uμ expresses the four-velocity of the test
particle. The conserved quantities responsible for the motion
of the test particle, such as the energy  and the angular
momentum , can be put in the form below:

t
=

¶ ¢
¶

= -
u

f r
Td

d
,

t
( )



q
f
t

=
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¶

=
fu

r sin
d

d
. 72 2 ( )



If we put equation (7) into the normalization condition
gμνu

μu ν=− ò, it is very convenient to find the equations of
motion of a test particle in the equatorial plane in which we
have q = p

2
as [91]:
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where parameter ò is described as given below [91]:

=
-

1, for timelike geodesics
0, for null geodesics

1, for spacelike geodesics
. 11

⎧
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( )

The equation expressing the radial motion reduces into the
following specific form:
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Here, Veff(r) represents the effective potential for the motion of
the test particles. For a massive test particle, the effective
potential depends on the radial coordinate around the BH. For
some different values of the parameters α, c2, c3, c6, c7 and r1
which can be fixed for the correct depiction of results, is shown
in figure 2. It shows that the stable circular orbits move with
respect to the central compact object. Moreover, Veff(r) for the
current study is less than the Schwarzschild case, where α= 0.

One can use the conditions  =r 0 and  =rd 0 to discuss
the circular motion of a neutral particle around the BH in f (Q)
gravity. These conditions permit one to get an expression for
the energy  and also for the angular momentum  of the test
particle in the equations

a a a

a
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+ - - --
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

Figure 2. Veff along radial coordinate r of the massive particle.
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and

where

Further detailed information regarding the conserved quan-
tities can be obtained from the graphs presented in figures 3
and 4. These graphs show the shift of the curves with respect
to the central BH for parameters α, c2, c3, c6, c7 and r1 of
f (Q) gravity. Also,  and  in our present study are more than
the GR case, where α= 0.

Now, we may take into consideration the radius of the
ISCO, rISCO. In order to calculate rISCO, we have to utilize the
following conditions [91]:

¢ =
 =

V

V

0,

0. 16
eff

eff ( )

Due to the complexity of the system we cannot deal with
rISCO analytically. The detailed behaviour of the ISCO
depending upon the parameters c2, c3, c6, c7 and r1 is shown
in figure 5. In particualr, one can see that rISCO is bigger than
the GR case (α= 0), and increases with the parameters c2, c6
and α, and decreases with the parameter c7.

2.2. Massless particle motion around a black hole in f (Q)
gravity

In this subsection, we study the massless particle (photon)
motion in a BH spacetime in f (Q) gravity. By utilizing the
metric Lagrangian of the f (Q) gravity BH spacetime, one can
obtain the equation of photon motion around the BH in the
f (Q) theory of gravity by taking ò= 0 in equation (11). In the
equatorial plane the equation of motion can be represented as
follows:

 = -r f r
r

, 172 2
2

2
( ) ( )


f =
r

, 18
2

( )

 =t
f r

. 19
( )

( )

By utilizing equation (17), one can easily get the expression
for effective potential Veff of the motion of the photon as [91]:

Figure 3.  along the radial coordinate r of the massive particle.
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=V f r
r
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Effective potential dependence on the radial coordinate for the
motion of photons is given in figure 6. The shift of photon
orbit towards and outwards from the central object for dif-
ferent parameters can be seen in figure 6. The photon’s cir-
cular orbit radius rph around the BH in f (Q) gravity can be
obtain from the solution of the second equation given in
equation (16). Being complex, we deal with it numerically.
The increasing and decreasing behaviour of the photon cir-
cular orbits rph with the f (Q) gravity parameters c2, c3, c6, c7,
r1 and α is expressed in figure 7. Notice that the increasing
and decreasing trend of the radius of the photon orbits is
similar to that for the massive particle discussed above.

3. Black hole shadow in f (Q) gravity

This section consists of the study of BH shadows in the f (Q)
theory of gravity. The angular radius of the BH shadow
[61, 83] consists of the following expression:

a =
Y r

Y r
sin , 212

sh
ph

2

obs
2

( )
( )

( )

with

= =Y r
g

g

r

f r
, 222 22

00

2
( )

( )
( )

where αsh denotes the angular radius of the BH shadow, robs
represents the observed distance and rph stands for the radius
of the photon sphere. By combining equations (21) and (22),

we obtain the following relation

a =
r

f r

f r

r
sin . 232

sh
ph
2

ph

obs

obs
2( )

( ) ( )

By utilizing equation (23), the radius of the BH shadow
at a large distance for an observer can conveniently be found
[61]:

 aR r
r

f r
sin . 24sh obs sh

ph

ph( )
( )

Finally, equation (24) is the non-rotating case of the
shadow of the BH. Figure 8 is the graphical depiction of the
radius of the BH shadow in f (Q) gravity for various values of
the parameters involved. It is important to notice that the BH
shadow decreases as compared to the Schwarzschild BH
shadow, indicated by the black solid line (curve) along the
increasing values of c6. Furthermore, we notice that the sha-
dow of the BH in f (Q) gravity increases with the increase in
the values of the parameters c2, c3 and α.

4. Weak gravitational lensing in f (Q) gravity

In this section, we study an optical characteristic of the BH in
f (Q) gravity by analysing the effect of weak gravitational
lensing. For an approximation to the weak field, the following
form of the metric tensor [33, 34] can be used:

h= +ab ab abg h , 25( )

where ηαβ and hαβ denote the Minkowski spacetime and the
perturbed gravitational field describes the f (Q) theory of
gravity. The following properties are essential for the two

Figure 4.  along the radial coordinate r of the massive particle.
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terms ηαβ and hαβ
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The general equation of the angle of deflection in the presence
of a plasma medium can be written in the following form
[33, 34]
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where N(x i) is the density of the plasma particles around the BH,
Ke= 4πe2/me is a constant, and ω and ωe= 4πe2N(x i)/m=
KeN(x

i) are photon and plasma frequencies, respectively [33].
By the use of the basic equations (27)–(26), we arrive at the

expression for the angle of deflection around the BH in f (Q)
gravity, as given below [33]:
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The metric element can be rewritten in the below given form:
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Figure 5. rISCO with parameters c2, c6, c7 and α for different values of α and r1.
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It is convenient to find the components hαβ of the metric
in the form of Cartesian coordinates:
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where c = +z b zcos2 2 2 2( ) and r2= b2+ z2 [33].

Differentiation of h00 and h33 with respect to the radial
coordinate is described by:
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The following is the relation representing the deflection angle
[40]
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Figure 6. Veff and the radial coordinate r of the massless particle.
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Now we make a schematic plan to analyse and calculate
the deflection angle for different forms of the plasma density
distributions.

4.1. Uniform plasma distribution

The gravitational deflection angle around the BH in f (Q)
gravity containing uniform plasma is written in the form of
the following relation [40]:

a a a a= + + . 37uni uni1 uni2 uni3ˆ ˆ ˆ ˆ ( )

By using equations (32), (35) and (36), it is easy to obtain
the expression for the deflection angle around the BH in f (Q)
gravity in a medium consisting of uniform plasma, as given
below:
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We can plot the dependence of the angle of deflection on the

impact parameter aw
w

b c c c, , , , ,2 3 6
0
2

2 , and c7 for various
values of other parameters of f (Q) gravity, such
as w wc c c c, , , , e2 3 6 7

2 2 etc in the BH spacetime of f (Q)
gravity. This behavior is represented graphically in figure 9. It
can be seen that the deflection angle auniˆ for f (Q) gravity is
less than for the GR case (α= 0).

4.2. Nonuniform plasma distribution

This part of our analysis consists of a non-singular isothermal
sphere (SIS), which is the most advantageous model to
understand specific properties of the photon sphere around a
BH in weak gravitational lensing. In general, an SIS is a
spherical gas cloud having singularity which is detected at its
centre where the density leads to infinity. The distribution of
density for an SIS is as follows [33]:

r
s
p

= nr
r2

, 39
2

2
( ) ( )

where sn
2 leads to the one-dimensional velocity dispersion.

The expression below represents the plasma concentration
[33]

r
=N r

r

km
, 40

p
( ) ( ) ( )

where mp denotes the mass and k denotes the dimension-free
constant coefficient of the dark-matter–dominated Universe.
The plasma frequency in its expressive form is given below:

w
s

p
= = nK N r

K

km r2
. 41e e

e

p

2
2

2
( ) ( )

Here, we explain the effects of nonuniform plasma on the
deflection angle in the f (Q) gravity BH spacetime. Expression
of the deflection angle in f (Q) gravity around the BH may be
written as [40]:

a a a a= + + . 42SIS SIS SIS SIS1 2 3ˆ ˆ ˆ ˆ ( )

By the combination of equations (32), (36) and (42), one can
get the deflection angle in the following form:
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These calculations lead to a supplementary plasma con-
stant wc

2 which is given in the form of the following analytic
expression [34]:

w
s

p
= nK

km R2
. 44c

e

p S

2
2

2
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Here, equation (43) allows us to plot the dependence of
the angle of deflection with different parameters of f (Q)
gravity, i.e. aw

w
b c c c, , , , ,2 3 6

c
2

2 and c7, for different
values of other parameters of f (Q) gravity, such as c c, ,2 3

w wc c, , c6 7
2 2 for the nonuniform plasma, shown in

figure 10. The deflection angle aSISˆ in f (Q) gravity is less than
the GR case (α= 0).

Moreover, we compare the different effects of uniform
and nonuniform plasma on the angle of deflection around the
BH in f (Q) gravity, represented in figure 11.

5. Conclusions

We have discussed the motion of massive and massless par-
ticles around a BH in f (Q) gravity and have investigated the
effects of the different spacetime parameters on the motion of
these particles. We have also analysed the BH shadow and
weak gravitational lensing in a plasma medium in the realm
backed by the f (Q) gravity spacetime. It is important to
mention that we have studied the f (Q) BH features
making comparison with the standard Schwarzschild BH of
GR. Subsequently, we have fixed other small values of α to
look at the impacts of f (Q) gravity. We have observed that all
the f (Q) gravity parameters α, c2, c3, c6, c7, r1, plasma impact
parameter b, plasma distribution w w0

2 2 (uni) and w wc
2 2 (SIS)

have influence on the study of the motion of particles around

9

Commun. Theor. Phys. 75 (2023) 125404 A Ditta et al



the BH in f (Q) gravity and on the associated phenomena of
gravitational lensing and shadow formation. The effects of all
these f (Q) gravity parameters on plasma distributions can
readily be seen from the graphs in the figures. The discussion
above of the dynamics of particles and the graphical analysis
of the BH spacetime in f (Q) gravity leads to the following
concluding remarks.

• We have explored the BH horizons in the paradigm of
f (Q) gravity. It can be observed from figure 1 that the
horizon radius increases with c2, c3 and α (for smaller
values of α) and decreases with c6.

• For the massive particle motion, we have studied the
dependency of the effective potential on the radius r for
different values of the f (Q) gravity parameters as plotted in
figure 2. The effective potential decreases with increasing
values of α, c2, c3, c7 and r1 and increases with c6. We

have also plotted the energy  and angular momentum in
figures 3 and 4. These figures show how the energy and
angular momentum of the particles change with the f (Q)
gravity parameters.

• We have also plotted the ISCO radius with different
parameters of f (Q) gravity for some values of α= 0,
0.02, 0.04, 0.06, as shown in figure 5. We have seen that
the radius of the ISCO increases with c2 and r1 and
decreases with c6, and c7.

• The photon radius has been obtained in the generic way
using the effective potential plotted in figure 6. We have
also discussed the photon motion as plotted in figure 7. It
is important to note the rph increases with c2, c3, r1 and
α, while it decreases with c6, and c7.

• Figure 8 shows the behavior of the radius of the BH
shadow in f (Q) gravity, which is to increase with c2,
c3 and α but to decrease with c6.

Figure 7. Radius of the photon orbit rph, with different f (Q) gravity parameters for some values of α and r1.
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Figure 8. Rsh for the BH shadow with different f (Q) gravity parameters for some values of α and r1.

Figure 9. Uniform plasma effect with different f (Q) and plasma parameters.
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• We have described the characteristics of the weak
gravitational lensing of the BH on a light ray in f (Q)
gravity in uniform and nonuniform plasma concentra-
tions, and plotted in figures 9 and 10 their increasing and
decreasing effects. It is worth noting that in all the cases
the concentration of uniform plasma from angle of
deflection is more than the nonuniform plasma, which
can be seen from figure 11.

Here we mention that this study may be of use in future
related works as it contains significant new findings about the
effects of the f (Q) theory of gravity parameters on particle
motion and associated phenomena in the BH spacetime.
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