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Abstract
In the last forty years, the rise of HIV has undoubtedly become a major concern in the field of
public health, imposing significant economic burdens on affected regions. Consequently, it
becomes imperative to undertake comprehensive investigations into the mechanisms governing
the dissemination of HIV within the human body. In this work, we have devised a mathematical
model that elucidates the intricate interplay between CD4" T-cells and viruses of HIV,
employing the principles of fractional calculus. The production rate of CD4 " T-cells, like other
immune cells depends on certain factors such as age, health status, and the presence of infections
or diseases. Therefore, we incorporate a variable source term in the dynamics of HIV infection
with a saturated incidence rate to enhance the precision of our findings. We introduce the
fundamental concepts of fractional operators as a means of scrutinizing the proposed HIV model.
To facilitate a deeper understanding of our system, we present an iterative scheme that elucidates
the trajectories of the solution pathways of the system. We show the time series analysis of our
model through numerical findings to conceptualize and understand the key factors of the system.
In addition to this, we present the phase portrait and the oscillatory behavior of the system with
the variation of different input parameters. This information can be utilized to predict the long-
term behavior of the system, including whether it will converge to a steady state or exhibit
periodic or chaotic oscillations.
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1. Introduction

In accordance with available reports, HIV infections inflict
damage upon the immune system of afflicted individuals,
leading to deleterious effects on vital internal organs such as
the kidneys, brain, and heart, ultimately culminating in mor-
tality. Although a definitive cure for this infectious disease
remains elusive, there exist efficacious antiretroviral treat-
ments that can substantially ameliorate a patient’s health.
However, it is worth noting that excessive utilization of these
medications may exert adverse effects on the host. Empirical
evidence from studies underscores HIV infection as the most
pernicious viral threat on a global scale, exerting profound
impacts across various sectors. In 2017, an estimated 1.8
million individuals were living with HIV, and tragically,
940,000 of them succumbed to the disease. Nevertheless,
there exists a firm belief that the AIDS pandemic can be
curtailed through a combination of preventative measures and
therapeutic interventions. The utilization of therapy has
expanded considerably, with individuals occasionally mani-
festing symptoms resembling sore throats, rashes, headaches,
fevers, and influenza-like manifestations. It is crucial to
underscore that when treatment is not administered promptly
and effectively, HIV infections progress into severe and life-
threatening conditions. The burden of HIV on society
encompasses not only the physical and emotional toll on
individuals, but also places strains on health-care systems and
resources. It fosters a need for comprehensive support struc-
tures, education, and public health initiatives to address the
multifaceted challenges posed by the virus.

It is acknowledged that mathematical models play a
crucial role in exploring the dynamics of infectious diseases
and biological processes [1-3]. These models serve as
invaluable tools for elucidating the intricacies of complex
biological phenomena and furnishing comprehensive insights
into the key factors governing biological systems [4-6].
Noteworthy contributions to the field include the establish-
ment of an HIV model and the subsequent identification of
statistically optimal control measures in 1999 by researchers,
as well as the development of various models in subsequent
studies to explore dynamic aspects, including viral mutation,
intracellular delays, and other relevant factors [7]. These
endeavors collectively contribute to our understanding of HIV
and its associated dynamics [8, 9]. The researchers in [10]
included two transmission methods, including direct cell-to-
cell transfer and infection by free virions, while HIV-positive
CD4" T-cell populations were examined in [11]. In the article
[12], Perilson and Nelson describe how they used a mathe-
matical model and determined some significant characteristics
of the system. The model originally described by the authors
in [12] was further modified by the authors in [13]. Through
study and fractional calculus, Samia er al [14] examined the
phenomenon of the HIV-1 infection. The researchers in [15]
used the homotopy analysis methodology to analyze the HIV
model, while authors in [16, 17] utilized different concepts
and approaches to study the dynamics of HIV. The chaotic
dynamics of HIV have been looked at and analyzed in [18].
The incorporation of the drug into the model and its

subsequent influence on the overall dynamics has been
investigated in the literature [19-21]. In this work, our pri-
mary objective is to understand the dynamics of HIV infec-
tion by incorporating a saturated incidence rate alongside a
variable source term.

Fractional derivatives provide a more versatile way to
model and describe the behavior of complex systems, especially
those with non-local and memory-dependent characteristics
[22-24]. They offer advantages in modeling biological phe-
nomena by providing a more nuanced representation of com-
plex processes, particularly in cases where memory and non-
local effects play a crucial role [25-27]. This enhanced mod-
eling capability allows for a more accurate portrayal of disease
dynamics, contributing to improved understanding, diagnosis,
and treatment strategies [28, 29]. Fractional operators provide a
more nuanced and realistic approach to modeling biological
systems, offering more accurate predictions and insights for
infectious diseases [30, 31]. It is evident that fractional calculus
is used in a variety of fields, including chemistry, economics,
biology and physics [32, 33]. Many numerical schemes
have been developed to visualize the dynamics of a fractional
system [34, 35]. Fractional calculus has been used in both older
studies and modern research to create more precise information
on the dynamics of a system. Specifically, fractional calculus
has found application in highlighting the dynamic aspects of
infectious diseases. The recently developed Caputo—Fabrizio
(CF) operator utilizes an exponential decay law kernel, a choice
that yields more precise and accurate outcomes when modeling
natural phenomena. The CF operator is a special case of the
new generalized Hattaf fractional (GHF) operator introduced in
[33]. In this study, our goal is to visualize the dynamical
behavior of HIV infection within a fractional framework, aim-
ing to attain results that are more accurate and precise. By
incorporating fractional calculus into disease modeling, we aim
to better understand the underlying mechanisms, improve pre-
diction accuracy, and potentially enhance the design of control
strategies.

The subsequent sections of this paper are organized as
follows: in section 2, we delineate the dynamics of HIV,
incorporating a saturated incidence rate and a variable source
term. To enhance the precision of our findings, we employ the
CF fractional operator to illustrate the hypothesized HIV
infection system. Section 3 provides an overview of the
fundamental principles of fractional theory, essential for the
analysis of the recommended HIV infection model. Section 4
introduces a numerical approach to underscore solution
pathways, while also presenting the dynamical behavior and
phase portrait of the proposed model. Finally, in section 5, we
present the concluding remarks summarizing the entirety of
our work.

2. Formulation of the model

In this section, we have organized the dynamics of HIV
infection in order to elucidate the interactions between the
HIV virus and the immune system. A number of researchers
developed and tested the reaction of CD4 " T-cells and HIV in
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Table 1. Interpretation of the system’s state variables and input parameters [46].

Input factors  Descriptions Values

Wr Healthy T-cell mortality rate 0.02 day ™"
N Amount of viruses produced by / Assumed
Tax Maximum concentration of healthy T-cells 1500 mm
k Healthy T-cell infection rate by free virus 2.4 x 107° days ™
Iy T-cell infection concentration initially Assumed
Ly The pace of death of HIV viruses 2.4 day™!

s Rate of T supply from precursors 0.1 mm~>
r Growth rate of the number of healthy T-cells 3 day™"'

Ty Healthy T-cell initial concentration Assumed
1y The percentage of infected T-cells that die 0.3 day !
Vo Amount of HIV-free viruses present Assumed

the past to explore this intricate phenomena [36-38]. The
researchers [39] introduced the HIV transmission phenomena
as:

d—T =s — up T+ (1 — T+I)rT— kVT,
dt max

dI

— = kVT — 41,

at Hy

dv

— = Ny, I — pyV, 1
& Hy Ky (D

where s represents the rate at which the body produces new
T-cells, ut represents the rate at which T-cells expire, and iy
and y; indicate the rate at which the particles V and the cells
of I expire. The number of cells generated by infected T-cell
reproduction is indicated by N while the rate at which healthy
T-cells become infected is taken to be k. The HIV model with
saturation incidence that Perelson and Nelson [40] is
expressed as

ar (TN v

dt Tinax 14+ aV

a Bvr

— = ——— L,

dt I +aV

dav

& Nyl = py V. (2)

In the next step, we propose a saturation incidence rate for the
propagation of HIV viruses and infected T-cells to healthy
CD4™" T-cells. The rate of production of CD4™" T-cells, like
other immune cells, can vary depending on factors such as
age, health status, and the presence of infections or diseases.
Generally, the production of CD4 " T-cells occurs in the bone
marrow, where hematopoietic stem cells differentiate into
various blood cell types, including T-cells. In healthy indi-
viduals, the body continuously produces T-cells to maintain a
functional immune system. The exact rate of production can
be influenced by factors such as thymic activity, which tends
to decline with age. Therefore, we assumed variable source

term s(V) given by UZ—SV Then, we have

ar_ w1 e
dt n + A\ Tmax
B kvT B alT

l+aV 1 +al
L _ _WT_ ol
dt 1+ oV 1+ ol
dI
— = koL — 1,
at 2 My
dv kVT
— =Nyl — uyV - ——, 3
at Hy Hy 1+ Vv 3)

where « indicates the effectiveness of a protease inhibitor and
s denotes the rate of cellular infection. In this formulation, the
concentration of healthy CD4" T-cells is denoted by T and
the latent stage of T-cells is indicated by L. Furthermore, the
concentration of infected T-cells is represented by / while the
strength of HIV viruses is symbolized by V in this
formulation.

The advantage of fractional order models is that they can
capture more complex dynamics and long-range dependen-
cies that may be present in certain biological systems. In the
context of diseases like HIV, which exhibit intricate and
evolving patterns, these models can provide a more accurate
representation of the dynamics. We use fractional calculus to
show the aforementioned dynamics in order to provide a more
realistic portrayal.

CFpir =T _ T+ (1 - )rT

n+V max

__kvT T
1 —|— Oé]V 1 —|— 0421 ’

orpgp = T ol 1 L

1 + alV 1 + OQI
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Figure 1. Performing a time series analysis of the prescribed system (4) of HIV infection, with the fractional order £ = 0.96, and values of s

and r established as 1.0 and 0.5, respectively.

where §¥D$ denotes a fractional derivative of the order & by
CF. The assessment of our proposed model for HIV infection
will rely on a fundamental comprehension of the innovative
fractional operator, the CF, which will be elucidated in the
subsequent section of the article.

3. Theory of fractional calculus

Here, we present the basic concepts and results of the frac-
tional CF derivative which will be used for further analysis.
The following is a list of the basic fundamental ideas:



Commun. Theor. Phys. 76 (2024) 035001

S Boulaaras et al

35 T T T T T 45 T T T T T
40 1
30 1
35 1
25 I T
1 30 1
2 I
[0} p N Ko}
,_920 I 82 |
> (R /\ I ,’\ AR "
£ l | ] THa A § 20 : 1
T 15 , I R ER AR % I
Q 0 /
T | - I | R
5y Al 1
10 ! AR NAR AN ANARANANE
YRR VY bl ) |\ IERVAVE VR VRIRIVA
‘ oy Yy NAAVERARY
5 1 | v
5 W} 1
0 1 1 1 1 1 0 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time in days Time in days
(a) (b)
30 T T T T T 5000 T T T T T
4500 |
25 1 -
4000 |
2 3500 1
20 1 o
') £
E . § 3000 .
T 9]
~ 3 I
o 15f Al £ 2500 VA A
Q \ [ [ I\
5 SR R TR 2 (Y It l
0 T 2000 Vbl
£ ol \ RN \ | \\/ ¥ \// \J/ | 8 ‘ ‘ \ | \ \\ I B /I ¥ \\/ \
I — v
FRVERYERVRVEAR J Cosoof L b WMWY 1
VI ¥ Jo\
/A 5 \
1000 |
5¢ |
500 1
0 1 1 1 1 1 0 1 1 1 1 1
0 50 100 150 200 250 300 50 100 150 200 250 300
Time in days Time in days
(c) (d)

Figure 2. Performing a time series analysis of the model (4) of HIV, employing a fractional order £ = 0.92, a cellular infection rate of s = 1.0
and parameter r = 0.5.

Definition 1. If f € G!(a, b) is true and in the case that b fractional derivative is as follows when f & G'(a, b):
exceeds a, then the fractional operator in [41] is given by

¢ _EUE) ! _ —ety
piie) = 145 [T —soned Hay©

e - UO [ ey
pii) = 11 [ prel 5 ilay, )

Remark 1. Consider the following: 3 = 1=¢ ¢ [0, c0) and

¢
&= ﬁ € [0, 1], equation (6) can thus be expressed as

where € € [0, 1] is the order of the operator and L/(7) stands
for normalcy with U(0) = U(1) = 1 [41]. Furthermore, the
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Figure 3. Illustration of the dynamical behavior of the model (4) of HIV by taking the input parameter k, = 1.4 x 10" instead of

ky =24 % 107" with £=1.0.

follows:
13 _ N(ﬁ) t 1 —’:—;y
Df(r0) =~ f Fionel =71y, N©)
— N(0) = 1,

where 3 € [0, co] and N(G) is the normalization

of U.

Furthermore, as

ﬂli_n}o%exp [_t_Ty] — 5(t—y). ®)

We now proceed to the explanation of the fractional integral,
originally presented in [42].



Commun. Theor. Phys. 76 (2024) 035001

S Boulaaras et al

70 T T T T T

Healthy T-cells

0 1 1 1 1 1
0 50 100 150 200 250 300
Time in days
(a)
40 T T T T T
351
30

Infected T-cells
- ny n
[6;] o [6;]
T
L I N

—

o
T
L

0 L L I I I
0 50 100 150 200 250 300

Time in days

()

60 T T T T T

50

N
o
T

Latent T-cells
wW
o

ny

o
T
1

0 1 1 1 1 1
0 50 100 150 200 250 300

Time in days

(b)

7000 T T T T T

6000

(%2
o
o
o
T

4000

3000 b

Free HIV virus particle

2000 [ b

1000 [ 7

0 I I L | I
0 50 100 150 200 250 300

Time in days

(d)

Figure 4. Analyzing the solution trajectories of the system (4) representing HIV infection through a graphical perspective, wherein we
consider the input parameter as o = 0.4 x 1072, instead of the previously used value of o = 5.4 x 10~ while maintaining ¢ = 1.0.

Definition 2. The fractional integral of CF for a given
function f is given as:

e _ 209
0= e ou "
2 :
_— du, > 0.
+(2 - f)L{(f)j;) v(u)du, t=> )]

where ¢ is the order of the integral such that 0 < £ < 1
and CFD4f(t) = v(t).

Remark 2. More examination of the above-mentioned
definition 2 reveals that
2(1 — 2
-9 2%

=1, (10)
Q2 -9uU©) 29U

where U(§) = 2%5 0 < € < 1. Nieto and Losada in [42]

presented a new Caputo derivative of order ¢ utilizing
equation (10), which is obtained by

D (F(1) = ——

! t—y /
¢ eXp[£—1 — g]f (y)dy, t=>0.

an

4. Numerical scheme for the model

The key objective of the current section is to numerically
illustrate how the recommended fractional model (4) of HIV
infection behaves dynamically. In order to demonstrate the
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Figure 5. Visualizing the solution pathways of the model (4) describing HIV, where we replace the input parameter k with k = 4.4 x 1072 in
lieu of the previous value of k = 2.2 x 10”2 while maintaining & = 1.0.

dynamics of the CF fractional systems, the literature [43—45]
has offered multiple numerical methods. To illustrate the
dynamics of our fractional system (4), which is more reliable,
practical, and stable, we shall employ the [45] technique. Our
suggested fractional model of HIV infection is first expressed
using the Volterra type, and it is then further simplified using
the fundamental theorem of integration. Our proposed model

of HIV infection’s first equation states that in order to obtain
the numerical scheme,

_ _1-¢
wi(t) — wi(0) = ) Ki(t, wy)
£
+u<g)fo K(w, wi)dw. (12)
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Figure 6. Analyzing the phase portrait of the recommended system (4) of HIV with the input parameter s = 1.0, r = 0.5 and £ = 0.98.

Then, using the time r=+¢,,;, v=0, 1,...,; Consequently, the and
below mentioned results are obtained

Wit — wi(0) = =Skt wit )

e ue)
v - 0) = Ky, 1, t
wity+1) — wi(0) G 1(ty, wit,)) i ufg) L K(t. wy)dr. (14)
- | K wdt, (13)
Uue) Jo The following formula is used to determine how the system’s
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Figure 7. Plotting the phase portrait of the recommended system (4) of HIV infection with the input parameter s = 0.50, r = 1.5 and £ = 0.98.
consecutive terms differ: [#,, ., 1] and obtain
1 - Ki(t
Wiy — Wi, = —g(lcl(tv’ wi,) — Kitv—1, wi,_)) Hog = M(t —t,_1)
U g
) ]C t
+if Kz, wy)dt. (15) _M(t —t), (16)
Ue) Jv "

We also use an interpolation polynomial to the above-men-  The equation H, is applied in order to calculate the value of
tioned approximation function Kj(¢, wy) in the time interval the subsequent integral, where g is the time spent and

10
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Figure 8. Illustration of the phase portrait of the recommended system (4) of HIV infection with the input parameter s = 5.0, r = 0.5
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g=t,—t, . By changing the value of (17) in equation (15), we obtain the

. . Kyt ) following.
v+1 v+1 Vs W v
[ ki wode= [ (%a ~t-)

_ 1-¢, 3&
~ Kiltv—1, Wi, ) - tv))dt, Wi, = wi, + ( ) + 2U(£))’C1(tv’ wi,)
1-¢ £8
:_32g Kt 1) = SHilty1, ). (17) ‘(Tg) %)’Cl(’”’ R 1o

11
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The above is the approximation of the first equation of
our fractional system (4) of HIV infection. For the 2nd and
3rd equations of system 4, we obtained the following using
the same technique:

—(% %)Kml, wa, ), (19)
and
wi, _ , =ws3, + (% + %)Kﬂtv, w3,)
- (% + %)&m_], wi ). (20)

For the CF operator, this method uses a two-step Adams—
Bashforth technique that takes into consideration both the
exponential decay rule and the nonlinearity of the kernel. In
[45], the stability and convergence of the method have been
discussed. In this work, we mainly focus on the dynamical
behavior of the system to conceptualize the impact of dif-
ferent parameters on the system. The analytic aspects of the
recommended system will be investigated in our future work.
Also, we will perform comparative analysis of the numerical
method with existing methods [34, 35].

5. Numerical results

HIV/AIDS still has a serious detrimental impact on affected
families despite major global efforts to control it. Reduced
income from employment, greater health-care costs, and a
loss of capital required to close the gap between income and
expenses all add to this burden. In order to prevent these
losses, it is imperative to do research into the fundamental
causes of HIV infection. The main goal of this research is to
visualize the dynamical behavior of the system in order to
understand how various factors affect it. We examine the
effects of the input variables on the dynamics of HIV using a
variety of numerical scenarios. For numerical purposes, we
take the values of input parameters from table 1 while the
values of state-variables are assumed to be T7(0)=30, L
(0) =40, 1(0) = 15 and V(0) = 50.

We run many simulations to see how input elements
affect the system and to illustrate how these parameters affect
the system, how HIV spreads and how it is controlled inside
the body of the host. Figures 1-2 show the system’s oscil-
latory behavior selecting fractional-order values. The sys-
tem’s solution pathways have been discovered to be
significantly impacted by the fractional parameter. It has been
highlighted that the parameter £ exerts a favorable influence
on the dynamics of HIV and could potentially serve as a
preventive measure. In figures 3-5, we have presented the
alterations in the input parameters k,, o, and k, demonstrating
their respective impacts on the solution trajectories of the
system. Additionally, in figures 6-8, we have depicted the

12

phase portraits of the recommended HIV infection model
under varying values of r and s, providing insights into the
long-term behavior of the system. In figure 7, we assumed the
values of s=0.50, r=1.5 and £=98 to comprehend the
dynamical behavior of the HIV model which provides a
deeper understanding of the system for effective control
strategies. The presence of chaos and oscillations in the
recommended model can be attributed to the system’s
inherent nonlinearity. Notably, our observations underscore
the substantial influence wielded by the input parameters,
with a reduction in ¢ holding the potential to mitigate the
incidence of HIV infections. Consequently, it is advisable for
policymakers to consider the manipulation of these input
factors as a potential strategy.

Our numerical findings investigated the oscillatory
behavior and phase portrait of the system with different input
values of the parameters. This information can be used to
predict the long-term behavior of the system, including
whether it will converge to a steady state or exhibit periodic
or chaotic oscillations. These phenomena are highly sensitive
to the input parameters of the system. The presence of chaos
in the system is reflected in its phase portrait, with the tra-
jectories exhibiting a complex and irregular pattern. Also, we
predict that these phenomena are due to the strong non-
linearity of the system and are dependable on each other.
These issues are important because of the essential knowledge
they provide about the HIV infection process.

Delays are important in biological modeling because they
reflect the temporal intricacies of biological phenomena,
allowing for a more accurate representation of the dynamic
and time-dependent nature of living systems [47, 48]. Incor-
porating delays in mathematical models enhances their rea-
lism and predictive power in understanding and simulating
complex biological dynamics [49]. Delays in the dynamics of
HIV are motivated by the biological processes inherent to the
infection, including the time it takes for infection and repli-
cation, immune response activation, treatment initiation, viral
load dynamics, latency in reservoirs, development of immune
memory, and the evolution of drug resistance. In future work,
we will incorporate a delay in our model to enhance their
accuracy and provide a more realistic representation of HIV
dynamics in the human body.

6. Conclusion

HIV is unequivocally acknowledged as a pathogenic agent
that preferentially targets the immune system, precipitating a
diminution in T-cell populations and concomitantly compro-
mising the host organism’s immune competence, thereby
impeding its ability to mount effective defenses against
additional pathogenic agents. Presently, the global public
health community confronts a substantial challenge posed by
the intricate interplay between HIV and T-cells. In our pursuit
to comprehend this complex phenomenon, we have devised a
mathematical model. Our model intricately captures the
interactions involving HIV viruses, infected T-cells, and
healthy T-cells. To characterize this HIV system, we have
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harnessed the fractional operator of Caputo—Fabrizio. By
employing numerical techniques, we have unveiled the
dynamic behavior of the HIV system under various scenarios.
Our investigations have demonstrated the profound influence
of fractional-order on the solution pathways of HIV infection,
as we systematically varied crucial input parameters asso-
ciated with infection management and prevention. Addition-
ally, by scrutinizing the phase portrait, we have gleaned
pivotal insights into system behavior, revealing the presence
of periodic orbits, limit cycles, and various types of attractors.
In future work, we intend to investigate our model of HIV
infection to assess the impact of medical advancements on the
virus’ progression and explore innovative treatment mod-
alities. Moreover, we will improve our model to incorporate
the effects of vaccinations and medications, enabling a
comprehensive analysis of their influence on the system.
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