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Abstract
In this study, we examined the thermal fluctuations, deflection angle, and greybody factor of a
high-dimensional Schwarzschild black hole in scalar–tensor–vector gravity (STVG). We
calculated some thermodynamic quantities related to the correction of the black hole entropy
caused by thermal fluctuations and discussed the effect of the correction parameters on these
quantities. By analyzing the changes in the corrected specific heat, we found that thermal
fluctuations made the small black hole more stable. It is worth noting that the STVG parameter
did not affect the thermodynamic stability of this black hole. Additionally, by utilizing the
Gauss–Bonnet theorem, the deflection angle was obtained in the weak field limit, and the effects
of the two parameters on the results were visualized. Finally, we calculated the bounds on the
greybody factor of a massless scalar field. We observed that as the STVG parameter around the
black hole increased, the weak deflection angle became larger, and more scalar particles can
reach infinity. However, the spacetime dimension has the opposite effect on the STVG parameter
on the weak deflection angle and greybody factor.
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1. Introduction

Although Einstein’s general relativity is one of the successful and
well-established gravitational theories in modern physics, it fails
to explain many observational results, such as the present stage of
cosmic acceleration [1], rotation curves of galaxies [2], and some
cosmological data [3]. Moreover, general relativity has inherent
deficiencies in theory, including the presence of spacetime sin-
gularities. Therefore, the problems of general relativity motivated
us to research alternative gravity theories. One of the modified
theories of gravity is the scalar–tensor–vector gravity (STVG)
theory proposed by Moffat [4], which is based on the action
principle and introduces three scalar fields and a vector field.
Moreover, this modified gravity (MOG), i.e. STVG, may offer an
alternative to the dark matter issue by introducing changes in the

gravity sector. Specifically, the STVG theory was able to explain
the rotation curves of galaxies [5] without the need for dark
matter and exhibited no deviation in Solar System observational
tests. This is because the STVG theory necessitates the variation
of the gravitational constant G, a vector field coupling constant ω,
and the vector field mass m̃ with respect to distance and time.
Moffat provided a black hole solution in the STVG theory in
another paper [4]. This solution considers the dimensionless
constant ω= 1 and neglects the effect of the vector field mass m̃.
Furthermore, it assumes that G is a constant dependent on a, i.e.
G=GN(1+ a), where GN is Newton’s constant. It is very clear
that parameter a is used to quantify the strength of the gravita-
tional field and is regarded as a deviation parameter from the
standard general relativity theory by the STVG theory. Later,
several studies in the literature were dedicated to exploring var-
ious black hole solutions in the context of the STVG theory
[6–9]. However, Jamali et al [10] found that a modified version
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of the STVG, known as mMOG, cannot be considered as an
alternative to the dark matter problem when new constants are
introduced in the kinetic term of the scalar field as its coefficients.
In addition, some studies have been conducted to understand the
characteristics of different black holes within the framework of
the STVG theory [11–14].

Despite the absence of direct observation or experimental
support for high-dimensional black holes in comparison with
four-dimensional black holes, there has been a notable increase
in interest in the physical characteristics of high-dimensional
black holes. This has a lot to do with the development of string
theory. For example, the Bekenstein–Hawking entropy relation,
which is proportional to the area of the event horizon of a black
hole [15], was derived in string theory for a five-dimensional
black hole [16]. In addition, we have to mention the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence or
gauge–string duality. This technique relates the classical
dynamics of D-dimensional gravity to the quantum physics of
the dual conformal field theory in (D – 1) dimensions [17]. The
theoretical significance of higher-dimensional black hole solu-
tions was extensively elucidated by Emparan and Reall [18].
Tangherlini [19] first proposed solutions of the Schwarzschild
and Reissner–Nordström black holes in D-dimensional space-
time. Later, Myers et al obtained the Kerr black hole solution in
a higher-dimensional spacetime [20]. Recently, Cai et al [21]
derived a higher-dimensional static spherically symmetric
Schwarzschild black hole in the STVG theory, which is a high-
dimensional extension of the STVG theory, and studied its
quasinormal modes of a massless scalar field and black hole
shadow. This black hole solution is a link between Einstein’s
theory and the STVG theory. Specifically, this black hole
degenerates to the Schwarzschild–Tangherlini black hole in
Einstein’s theory, with a coupling constant a of zero.

Hawking believed that black holes are not completely black
objects and can emit radiation known as Hawking radiation
[22, 23]. This lays an important foundation for understanding the
thermodynamics of black holes. Black holes also adhere to the
four laws of black hole mechanics, which bear resemblance to
the laws of thermodynamics. As can be seen from the second law
of black hole thermodynamics, the black hole entropy is max-
imum compared with objects of the same volume. However, due
to the thermal fluctuations that lead to the concept of the holo-
graphic principle [24], the maximum entropy of black holes may
be corrected. The correction term in the maximum entropy is
generated by the quantum fluctuations in the spacetime geometry
rather than the matter field in spacetime. Generally, quantum
fluctuations are negligible for large black holes; thus, large black
holes are considered to be thermodynamically stable. When the
size of a black hole is reduced due to Hawking radiation, the
quantum fluctuations in the spacetime geometry increase, and the
black hole becomes unstable. However, there are cases where
small black holes are thermodynamically stable [25–27]. The
presence of a logarithmic correction at the leading order in black
hole entropy explains this phenomenon [28]. Upadhyay investi-
gated the effect of thermal fluctuations on a quasitopological
black hole and found that the negative correction term leads to a
local instability of black hole [29]. The influence of a logarithmic
correction on the thermodynamics due to thermal fluctuations for

a dilaton black hole in gravity’s rainbow was studied in [30]. A
number of studies have been devoted to studying the effects of
thermal fluctuations on black hole thermodynamics [31–37].

The Hawking radiation detected at infinity of the black hole
differs by a redshift factor, called greybody factor, from the
authentic radiation detected at the black hole horizon due to the
existence of a potential barrier. The greybody factor derived from
the transmission amplitude can provide information related to the
quantum nature of black holes [38]. Additionally, it can be used
to approximate the part of the initial quantum radiation that is
reflected back by the potential barrier close to the event horizon
[39]. In other words, the waves coming from infinity are partially
absorbed by the black hole, and the absorption rate (probability
of crossing the barrier) is referred to as the greybody factor. The
greybody factor has the same meaning in both cases. When one
considers a test field with suitable boundary conditions, such as a
scalar field impinging on a black hole, the greybody factor is
crucial not only for understanding the classical scattering problem
but also for estimating the intensity of the Hawking radiation.
There are several methods for calculating the greybody factor,
such as the bounds on the greybody factor [40–43], Wenzel–
Kramers–Brillouin (WKB) method [44–48], and exact numerical
approach [49–51]. In this study, we chose the bounds on the
greybody factor because it can provide analytical results for the
intermediate frequencies and all angular momenta.

Because of its strong gravitational force, the spacetime
around a massive central object is no longer flat. Consequently,
when a light ray encounters a compact object in its trajectory
toward a distant observer, the observer observes a deflection
angle in the light ray. This phenomenon, known as gravitational
lensing, occurs when a compact object bends a light ray. Grav-
itational lensing, which can be classified as strong gravitational
lensing, weak gravitational lensing, or microgravitational lensing,
is used as a specialized astronomical tool to verify the correctness
of the general theory of relativity. Specifically, the strong grav-
itational lensing is employed to determine the magnification and
position of black holes. The weak gravitational lensing can help
us measure the masses of different objects or restrict the cos-
mological parameter. In addition, weak gravitational lensing also
has an important effect on the cosmic microwave background
aspects [52–54]. At present, the study of the strong or weak
gravitational lensing of compact objects, such as wormholes,
black holes, and cosmic strings, has gained significant attention
[55–74, 75, 76]. Part of the studies in the aforementioned lit-
erature is based on Gauss–Bonnet theorem for calculating the
deflection angle for the weak gravitational lensing. The Gauss–
Bonnet theorem, proposed by Gibbon and Werner [77] in 2008,
was used for the first time to derive the deflection angle in the
context of optical geometry. Since then, this method has been
applied to calculate the weak deflection angle of various black
holes [78–88]. We intend to investigate the weak deflection angle
in high-dimensional Schwarzschild spacetime within the frame-
work of the STVG theory using the Gauss–Bonnet theorem. This
will help us to gain a deeper understanding of the geometry of
this black hole. Since the 1970s, the scattering problem caused by
plane waves impinging on black holes has been of interest.
Similar to Rutherford scattering, a classical formula that involves
the deflection angle (i.e. the classical differential scattering cross

2

Commun. Theor. Phys. 76 (2024) 115402 Q Li et al



section) describes the intensity of scattering by black holes [89].
Therefore, in addition to the use of weak deflection angles in
weak gravitational lensing, it is used to approximately estimate
the classical differential scattering cross section for small angles.

To gain a more comprehensive understanding of this black
hole, we conducted studies from the perspectives of quantum and
geometry. At the quantum level, using Hawking radiation as a
starting point, we explored issues related to black hole thermo-
dynamics and greybody factor to help us understand the physical
properties and behavior of this black hole. In terms of geometry,
we focused on the phenomenon of weak deflection angles. This
not only deepened our understanding of the geometry of space
around black holes but also provided crucial experimental evi-
dence for exploring and verifying modified theories of gravity,
thereby helping us reveal more details about the nature of MOG.
Through these two aspects of research, we hope that this study
will help us describe and predict the behavior of black holes and
their impact on the surrounding matter. The remainder of this
paper is structured as follows. In section 2, we briefly introduce a
high-dimensional Schwarzschild black hole solution in the
STVG theory. We then review the physical features of this black
hole. In section 3, we study the corrected thermodynamic
quantities due to thermal fluctuations. Section 4 presents the
calculation of the weak deflection angle using the Gauss–Bonnet
theorem. We discuss the bounds on the greybody factor in
section 5. Our conclusions are summarized in the last section.

Throughout this paper, a natural system of units
(GN= ÿ= c= 1) is adopted.

2. Fundamental spacetime

In this section, we introduce high-dimensional Schwarzschild
spacetime in the STVG theory and review some thermo-
dynamic properties. The general action of the STVG theory in
D-dimensional spacetime takes the form [6]

S S S S S , 1L GR S M= + + +f ( )
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where SGR is the Einstein–Hilbert action, Sf stands for the
action of a massive vector field fμ, SS denotes the action of
the scalar field, SM represents the matter action, and fμ is a
massive vector field (Proca type) with mass m̃. K, being the
kinetic term of the vector field fμ, is usually written as K =

B B1

4
mn

mn, where the tensor field is defined as Bμν=
∂μfν−∂νfμ. V(G) and V m( ˜ ) are the two potentials related to
the two scalar fields G(x) and xm̃( ), respectively.

The black hole metric in the D-dimensional spacetime
has the following form:
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whereM is the black hole mass. Moreover, ΩD−2 denoting the
volume of unit (D− 2)-dimensional sphere has the form,
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When the dimensionless parameter a= 0, we can get a
Schwarzschild–Tangherlini black hole in Einstein’s gravity.
Moffat gave a Schwarzschild black hole in the STVG theory for
the case D= 4 [6]. Mureika et al [90] pointed out that the
parameter q of the Schwarzschild black hole in the STVG theory
relies only on the mass M and dimensionless parameter a. Thus,
q is called the gravitational charge rather than the charge.
Moreover, one can find that there is a similarity between a high-
dimensional Schwarzschild black hole in the STVG theory and a
high-dimensional Reissner–Nordström black hole in Einstein
gravity from the metric [26]. The high-dimensional Schwarzs-
child STVG black hole possesses up to two horizons,
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where r− and r+ represent the Cauchy horizon and the event
horizon, respectively.

The black hole mass in terms of r+ has the form,
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The Hawking temperature is given by

T
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In addition, the Bekenstein–Hawking entropy of this
high-dimensional black hole S0 is given by
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3. Thermal fluctuations

In this section, we investigate the influence of thermal fluc-
tuations on the thermodynamic potential of a high-dimen-
sional Schwarzschild STVG black hole. First, we introduce
thermal fluctuations and then calculate some important
modified thermodynamic quantities. We cannot neglect the
influence of thermal fluctuations on black hole thermo-
dynamics when the radius of the black hole decreases and the
temperature of the black hole is large. Thermal fluctuations
are regarded as perturbations around the state of equilibrium if
they are small enough.

To study the impact of thermal fluctuations on the
entropy of a high-dimensional Schwarzschild STVG black
hole, we briefly derived the expression of the corrected
entropy (see [91] for more details). The partition function
employed to derive the corrected entropy is defined as
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where S Z Elnb b b= +( ) ( ) is referred to as the modified
entropy of the black hole, which depends on the Hawking
temperature. Using the Taylor expansion around the extre-
mum β0 with the aid of the steepest descent method, the
corrected entropy is described as
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By solving for the integral, we obtained the exact
expression, which is
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and taking the logarithm of this expression, we obtained the
expression of the corrected entropy as follows [26, 91]:
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Without loss of generality, a general expression for the
corrected entropy area relation is written as [92–97]
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Note that to control the effect of logarithmic correction on
the corrected entropy, 1/2 is replaced by the dimensionless
parameter α; λ is the second-order correction parameter. The
leading-order correction is a logarithmic term caused by thermal
fluctuations, and the second-order correction proportional to the
inverse to the uncorrected entropy is produced by extending the
entropy function around the equilibrium. To better verify the
effects of parameters α and λ in subsequent calculations, larger
values of parameters α and λ may be chosen.

Using equations (10) and (11), the corrected entropy of
this high-dimensional black hole is given as
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We plotted the corrected entropy against the event horizon
radius for different parameters in figures 1 and 2. As depicted in
figure 1, the presence of the leading-order correction resulted in
an increase in entropy for small values of the event horizon
radius. However, the corrected entropy gradually decreased and
returned to the original entropy as the event horizon radius
increased. The rhs of figure 1 shows that the second-order cor-
rection term significantly influenced the entropy of a small black
hole. In fact, thermal fluctuations have a greater impact on small
black holes than on large black holes. Additionally, we
demonstrate the effect of spacetime dimensionality on the cor-
rected entropy on the lhs of figure 2. We observed that the
corrected entropy changed rapidly and significantly in high-
dimensional spacetime. Therefore, it is evident that for small or
large black holes, the higher the dimension, the greater is the
corrected entropy, whereas this trend does not hold for medium-
sized black holes. Furthermore, from the rhs of figure 2, we
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deduced that the STVG parameter a led to a slight increase in
the corrected entropy.

We can calculate the Helmholtz free energy using the
corrected entropy and temperature as

To gain a better understanding of the corrected Helm-
holtz free energy, we depict the Helmholtz free energy as a
function of the event horizon for different parameters α, λ, D,

and a in figures 3 and 4. In figure 3, we observed that the
Helmholtz free energy, without any corrections, is a mono-
tonically increasing function that remains positive. It is
noteworthy that the Helmholtz free energy becomes negative

for a small black hole under thermal fluctuations but returns to
positive as the event horizon radius increases. Conversely, for
larger black holes, the presence of the logarithmic correction

Figure 1. Entropy S in terms of event horizon r+ for different values of α and λ.

Figure 2. Entropy S in terms of event horizon r+ for different values of D and a.
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term increases the Helmholtz free energy. Furthermore, from
the lhs of figure 4, we observed that the influence of space-
time dimensionality on the modified Helmholtz free energy is
akin to that of the logarithmic correction. The impact of the
STVG parameter a on the corrected Helmholtz free energy is
evident on the rhs of figure 4, where it is apparent that the
STVG parameter a decreased the corrected Helmholtz free
energy.

The internal energy, as one of the thermodynamic quan-
tities, has the thermodynamic relationship U=F+ TS, i.e.

U
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Figures 5 and 6 present the behavior of the corrected
internal energy with increasing event horizon radius for
different parameters α, λ, D, and a. As shown in figure 5,
the internal energy has a positive asymptotic value under
thermal fluctuations for a small black hole, whereas the
effect of thermal fluctuations can be neglected when the
event horizon radius is increased. We can see clearly that the
higher the dimensionality of the black hole, the larger is the
corrected internal energy. However, the corrected internal
energy decreases with the increase in the STVG parameter.

Next, we investigated the heat capacity of the black hole,
which can be written as C U Td d V
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The behavior of the heat capacity is shown in figures 7
and 8. In figure 7, we observed that without any thermal
fluctuations, the heat capacity is negative; thus, the black hole
is thermodynamically unstable. The existence of thermal
fluctuations causes small black holes to have a positive heat
capacity; thus, there is a phase transition that shows the
transition of the system from unstable to stable. Moreover, the
critical point gradually moved to the right when we increased
the correction coefficients α and λ. From figure 8, we can see
that the phase transition occurs at a larger event horizon
radius if the spacetime dimensionality D increases. It is worth
mentioning that the heat capacity of a high-dimensional
Schwarzschild STVG black hole recovers to that of a
Schwarzschild–Tangherlini black hole. In essence, the STVG
parameter does not affect the stability conditions of black
holes.

4. Weak deflection angle

In this section, we obtain the deflection angle in the weak field
limit using the Gauss–Bonnet theorem. For equatorial plane

2
q = p and null geodesic ds2= 0, the corresponding optical
metric of a high-dimensional Schwarzschild STVG black hole
has the following form:
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Afterward, we can rewrite the optical metric using the
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We obtain the Gaussian optical curvature as follows [72]:
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We can now calculate the deflection angle using the
Gauss–Bonnet theorem [78]. The domain is deemed to be a
subset of a compact, oriented surface, with Gaussian optical
curvature K and Euler characteristic number c( ), and ¶ is
the piecewise smooth boundary of domain  with geodesic
curvature κ. We consider iâ to be the exterior angle at the ith
vertex. The Gauss–Bonnet theorem is

K S td d 2 , 26
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where dS stands for the surface element. In addition, the
geodesic curvature κ along a smooth curve γ is written as

g ,k g g= Dg( ̈), where g ̈ denotes the unit acceleration vector.
We consider that  is bounded by the geodesics γc and γR,
where γR is considered to be perpendicular to γc at source S
and observer O; thus, κ(γc)= 0 by definition. Then,

i i S Oa a aå = +ˆ ˆ ˆ , as well as 1c =( ) . Equation (26)
reduces to

K S td d . 27R
R

ò ò ò k g p+ =
g

( ) ( )

Using the definition of geodesic curvature, the radial part
of κ(γp) can be expressed as

    , 28p p
r

R R
r r

R
2

p
k g g g g g= D = ¶ + Gg

f
f ff

f( ) ( ) ( ) ( ) ( )

where Rg represents the tangent vector of geodesics γR,
and rGff is a Christoffel symbol. When we consider

R constRg =≔ , the first term on the right side of the

6

Commun. Theor. Phys. 76 (2024) 115402 Q Li et al



preceding equation equals zero, and the second term is
R

1 ;

thus, κ(γR) reduces to R

1 . We can make a change in variables
dt using the relevant optical metric (24), which can be

rewritten as dt= Rdj. Equation (27) becomes

K Sd d . 29
0

b


ò ò ò j p+ =

p a+
( )

ˆ

Figure 3. Helmholtz free energy F in terms of event horizon r+ for different values of α and λ.

Figure 4. Helmholtz free energy F in terms of event horizon r+ for different values of D and a.

Figure 5. Internal energy U in terms of event horizon r+ for different values of α and λ.
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Figure 6. Internal energy U in terms of event horizon r+ for different values of D and a.

Figure 7. Heat capacity C in terms of event horizon r+ for different values of α and λ.

Figure 8. Heat capacity C in terms of event horizon r+ for different values of D.
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Finally, we obtain the deflection angle [78]

K Sd . 30b
b0 sinò òa = -

p

f

¥
ˆ ( )

We can now calculate the deflection angle of a high-
dimensional Schwarzschild black hole in the STVG theory for
different spacetime dimensionalities. As an example, we
calculated the deflection angle when D= 4, 5, 6, and 7:
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The behavior of the deflection angle with respect to the
impact parameter for different values of D and a is shown in
figure 9. It is clear that the higher the black hole dimension,
the smaller is the deflection angle. However, the STVG
parameter has an increasing effect on the deflection angle, i.e.
a high-dimensional Schwarzschild STVG black hole leads to
a larger deflection angle than a Schwarzschild–Tangherlini
black hole.

5. Greybody factor

In this section, we study the bounds on greybody factor for
the massless scalar field. The massless scalar field Φ is
represented by the Klein–Gordon equation [98],

g
g g

1
0, 32

-
¶ - ¶ F =m

mn
n( ) ( )

where g is the determinant of the metric tensor. To separate
the radial and angular variables, we have an ansatz

Y r re ,m
t

l
i D 2

2q jF = Yw- -( ) ( ) and make a change rd r

f r

d

* = ( )
.

Substituting the aforementioned definitions and metric func-
tion equation (4) into equation (32), we obtained a Schrö-
dinger-like wave expression:

r

r
V r r

d

d
0, 33eff

2

2
2

*
w

Y
+ - Y =

( ) [ ( )] ( ) ( )

in which ω denotes frequency, and l and m are the azimuthal
quantum number and spherical harmonic index, respectively.

The effective potential Veff(r) can be written as

⎡
⎣

⎤
⎦

V r f r
l D l

r

D D f r

r

D f r

r

3 2 4

4

2

2
.

34

eff 2 2
=

+ -
+

- -

+
- ¢

( ) ( ) ( ) ( )( ) ( )

( ) ( )

( )

To better understand the effect of the dimensionality of
the spacetime and STVG parameter on the effective potential,
we visualized the effective potential with respect to the black
hole radius for different values of D and a, as shown in
figure 10. Obviously, the dimensionality of spacetime caused
an increase in the effective potential, whereas the STVG
parameter has the opposite effect. We can expect the behavior
of the greybody factor from the effective potential.

Figure 9. Deflection angle bâ in terms of impact parameter b for different values of D and a. The black hole mass is M= 1.
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The bounds on the greybody factor can be expressed as
[40]

⎡

⎣
⎢

⎤

⎦
⎥T

h V h

h
rsech

2
d ,

35

2
2 2

eff
2 2

*òw
w¢ + - -

-¥

¥
( )

( ) ( )

( )

where h≡ h(r*) and h(r*)> 0; h is an arbitrary function and
satisfies h(−∞ )= h(∞ )=ω, and there were two particular
functional forms of h considered in [40]. In this study, we con-
sidered only the case h=ω. Thus, equation (35) was rewritten as

⎡
⎣⎢

⎤
⎦⎥

T
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f r
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1

2
d . 36
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( )

( )

After expanding the integral, we obtained the lower bounds
on the greybody factor
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Figure 11 demonstrates the behavior of the greybody factor
for the high-dimensional Schwarzschild black hole in the STVG
theory. From the left panel, we observed that the greybody factor
decreased with an increase in the dimension. In other words, the
greybody factor is suppressed in high-dimensional spacetime.
This indicates that fewer massless scalar particles pass through
the potential barrier and reach spatial infinity in a higher-
dimensional black hole. Additionally, we observed that as the
STVG parameter a increased, the greybody factor increased. That
is, more radiation passes through the potential barrier and reaches
infinity as the STVG parameter increases.

6. Conclusions

In this study, we analyzed the thermal fluctuations, weak
deflection angle, and greybody factor of a high-dimensional
Schwarzschild STVG black hole.

First, we evaluated the influence of the logarithmic and
higher-order corrections of entropy on the Helmholtz free
energy, internal energy, and heat capacity. We compared the
corrected and uncorrected thermodynamic properties. Overall,
the corrected entropy as a consequence of thermal fluctuations

Figure 11. Greybody factor T(ω) in terms of frequency ω for different values of D and a. The black hole mass is M= 1.

Figure 10. Behavior of effective potential Veff for different values of D and a. The black hole mass is M= 1.
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first decreased and then increased, and the impact of thermal
fluctuations was significant for a small black hole. Because of
the effect of the dimensionality of spacetime, the curves of the
corrected entropy have different intersections. This means
that for a small or large black hole, the corrected entropy
increases as the spacetime dimensionality increases, whereas
the middle black hole is not the case. The presence of the
STVG parameter led to a slight increase in the corrected
entropy. The black hole with small values of the event hor-
izon radius possessed negative Helmholtz free energy because
of thermal fluctuations. The Helmholtz free energy increased
monotonically with increasing values of the parameters D and
a for a small black hole. For a larger black hole, the para-
meters D and a have opposite effects on the Helmholtz free
energy. The internal energy remained positive, and its beha-
vior was similar to that of the corrected entropy. The internal
energy increased with an increase in the dimensions, whereas
it decreased as the STVG parameter increased. In addition, we
have found that thermal fluctuations make the small black
hole more stable from the analysis of Helmholtz free energy
and heat capacity in all dimensional cases, and the heat
capacity is independent of the STVG parameter.

Second, we calculated the weak deflection angle using
the Gauss–Bonnet theorem and presented expressions for
D= 4, 5, 6, and 7. We pointed out that in higher-dimensional
spacetime, the weak deflection angle became weaker, but the
presence of the STVG parameter resulted in an increase in the
deflection angle. In the future, we can calculate the mass of
the black hole more accurately by measuring the weak
deflection angle of light caused by a black hole. This is
important for studying the dynamics and evolution of black
holes. It is worth emphasizing that the STVG theory does not
include dark matter, but it can account for the rotation curves
of galaxies, which require the presence of dark matter to
explain the phenomena in the general relativity theory.
Therefore, by comparing the predictions of such theories
regarding weak deflection angles with actual observational
data, clues may be provided regarding which theories are
more effective in describing our universe.

Finally, we computed the greybody factor of the massless
scalar field and then analyzed the effect of the spacetime
dimensionality and STVG parameter on the greybody factor.
We discovered that the four-dimensional black hole had the
largest greybody factor values, whereas the seven-dimen-
sional black hole had the smallest values. Moreover, when the
STVG parameter increased, the greybody factor increased.
We found that more radiation can reach spatial infinity in a
four-dimensional black hole with a larger value of STVG
parameter.
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