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Self-organized Criticality in an Earthquake Model on Random Network
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Abstract A simplified Olami—Feder—Christensen model on a random network has been studied. We propose a new
toppling rule — when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors

randomly not averagely.

The simulation results indicate that the model displays self-organized criticality when the

system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the
system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different
nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the

system.
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1 Introduction

In 1987, Bak, Tang, and Wiensenfield introduced a
concept of self-organized criticality (SOC),) which was
proposed as a possible explanation for the widespread oc-
currence in nature of long-rang correlations in space and
time. The main characteristic of SOC model is that with-
out the fine tuning of parameters, the system can reach a
steady state which is characterized by a power-law distri-
bution of the size of avalanches. The study of the SOC sys-
tems to a great extent has been based on simulations using
cellular automaton models. A number of simple models
have been developed to test the applicability of SOC to
a variety of complex interacting dynamical systems, such
as sand piles and earthquakes.271% The majority of these
simulations have been limited to conservative models. At
first, it was suggested that the necessary condition for
SOC was indeed a conservation law. This seems to be
the situation for SOC models where perturbation is done
locally as in the original BTW model.'Y) But in recent
years, it has been shown that nonconservative earthquake
model with a global perturbation displays SOC.

Earthquakes may be the most dramatic example of
SOC that can be seen on earth. The relevance of SOC
to earthquakes was first pointed out by Bak and Tang,[*?
Sornette and Sornette, 3] Tto and Matcusaki.l*¥ Most of
the time the crust of the earth is at rest, or quiescent.
These periods of stasis are punctuated by sudden, thus
far unpredictable, bursts, or earthquake.[!

In 1992, Olami, Feder, and Christensen proposed a
simplified earthquake model (OFC model) on a two-
dimensional regular square lattice,1®16 where the OFC
model displays criticality. Later, earthquake model has
been applied on some other networks, such as the RN OFC
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1,17-20] where each site interacts with randomly cho-

mode
sen sites instead of its nearest neighbors at each update
on the square lattice, displays critical behavior only when
the system is conservative. Lise and Paczuski have pro-
posed an earthquake model on quenched random graph,®!
where all sites have the same number of nearest neigh-
bors chosen randomly except two sites, which have fewer
neighbors, displays criticality even the system is noncon-
servative. Recently, the earthquake model on small world
networks has been investigated,!®6 and it displays crit-
icality under some conditions. However, the presence of
criticality in the nonconservative OFC model has still been
controversial.2 =23 It has been verified that the avalanche
distribution of the OFC model on the lattice does not dis-
play finite size scaling.

The toppling rule of the earthquake model on differ-
ent networks that has been studied is that when there is
a site toppling, the force of the site is redistributed to
all its nearest neighboring sites averagely. In this paper,
we propose our earthquake model: on a random network
with IV sites, where every site has the same number of
neighbors, ¢, with a number of defects which have ¢ — 1
neighbors. We introduce a new toppling rule — the en-
ergy of the toppling is redistributed to all its neighbors
randomly. The system evolves into a critical state after
a transient period. We numerically investigate the prob-
ability distribution of the avalanche size of the system in
detail. And we measure the exponent characterizing the
probability distribution.

2 Model

The random network is defined as a set of Nsites con-
nected by bonds randomly. Two connected sites are de-
noted as “nearest neighbors”. The number of nearest
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neighbors of every site is the same ¢ (self-connections and
duplicate edges are excluded).

The dynamical process of our model is as follows.

(i) With each site of the network is associated a real
variable F;. Initially, the force at each site is chosen ran-
domly from a uniform distribution between 0 and F}y,, and
Fy, = 1.

(ii) If any F; > Fy, then redistribute the force on F;
to its neighbors randomly according to the following rule

FjHFj+OéjE, Fiﬂo, (1)

Zaj:a, (2)

where j denotes the nearest neighbor site of i. The pa-
rameter «; is the fraction that the nearest neighbor site of
j gets from the unstable site . The parameter o controls
the level of conservation of the dynamics, where a = 1
corresponds to the conservative case, while o < 1 implies
the model is nonconservative, and the energy decreases
during an avalanche.

(iii) Repeat step (ii) until all sites of the network are
stable. The sequence of the toppling of the unstable sites
forms an avalanche. Define this process as one avalanche
and the number of topplings during an earthquake defines
its size, s.

(iv) Find out the maximal value of all F;, Fiax, and
add Fip, — Fiax to all sites and return to step (ii), i.e. all
the forces are increased uniformly and simultaneously at
the same speed.

(v) Begin step (iv) again and another new avalanche
begins.

We find that the system with periodic boundary con-
ditions quickly reach an exactly periodic state in OFC
model on the square lattice, the avalanche size distribu-
tion function drops very quickly with size,?*27 i.e. there
is no critical behavior if every site has exactly the same
number of nearest neighbors. It has been verified that the
OFC model on quenched random graph also has no crit-
ical behavior if all sites have exactly the same number of
nearest neighbor sites ¢.[!

In order to observe scaling in the avalanche distribu-
tion, it is necessary to introduce some inhomogeneities.
In the lattice model this is generally achieved by consid-
ering open boundary conditions,[?4=26 i.e. the boundary
sites have fewer neighbors than other sites.
graph model it suffices to consider just two sites with

In random

q — 1 neighborsl! to break the periodicity of the system.
A number of inhomogeneities is introduced randomly to
ensure that there are a number of sites which have ¢ — 1
neighbors in our model, here we consider defects whose
number scale as VN (analogously to boundary sites in
the lattice model). When one of these sites topples ac-

cording to rule (ii), there will be a fraction «;F; lost by
the system.

3 Simulations and Results

After a sufficiently long transient time, the system
reaches a critical steady state. In the critical state, the
properties of the avalanche are studied. The size of an
avalanche can be defined in several ways: the number
of topplings s, the avalanche time duration ¢, and the
avalanche area a. The duration ¢ of an avalanche is equal
to the number of time steps needed for the earthquake
to finish; the area a is defined as the number of system
sites toppling at least once during an avalanche. We focus
on the probability distribution of earthquake sizes s, in a
system of size N, P(s, N), when the system is conserva-
tive. The statistics are collected in the critical state for
10% non-zero avalanches for each system size.

We consider first « = 1, the nearest neighbor sites
g = 4 and the defects ¢ = v/N, with different system sizes
N = 1024, 2048, 8192, respectively. In Fig. 1, we find
that the distribution of the avalanche sizes has power-law
behavior, i.e,

p(s,N) ~ 57" (3)

We can see that with the increasing IV, the region of the
power-law increases, which is indicative of a critical state.
In order to characterize the critical behavior of the model,
a finite size scaling (FSS) ansatz is used. One ansatz that
can describe critical behavior is the F'SS ansatz, which was
previously used by OFC model, i.e.,

P(s,N)~ NPf(s/NP), (4)
where f is a suitable scaling function, and 8 and D are
critical exponents describing the scaling of the distribution
function. The critical index D expresses how the finite-size
cutoff scales with the system size, while the critical index 3
is related to the normalization (or rather renormalization)
of the distribution function.[3! In Fig. 2, an FSS collapse
of P(s,N) for different N = 1024, 2048, 8192 with the
same value of «, the same ¢, and defects ¢ is shown. We
can see that the probability distribution P(s, N) satisfies
the FSS hypothesis reasonably well. The critical expo-
nents derived from the fit of Fig. 2 are § ~ 1.54, D = 1.12.
The FSS hypothesis implies that for asymptotically large
N, the value of the exponent is 7 = /D ~ 1.38. The
exponent 7 we obtain from our model is different from
the one for the OFC model in a two-dimensional lattice
(7 = 1.8), conservative RN model (7 = 1.5), or the earth-
quake model on a quenched random graph (7 = 1.65).

Here we also study the influence of the spatial topol-
ogy of the system. We take the system size N = 1024,
the defects ¢ = 32, in Fig. 3 from left to right; the log-log
plot of the distribution is ¢ = 4, ¢ = 6, respectively. In
order to see clearly, the curves for ¢ = 4 is shifted in the
downward direction. From Fig. 3 we can see that when
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the system is conservative, different neatest neighbor sites
q of the system give parallel lines of distribution. This
indicates that the different spatial topology does not alter
the critical behavior, specifically the scaling exponents of
our model.

We have shown that the critical behavior of our model
when the system is conservative, and now we want to know
whether the system still displays scaling when the system
is nonconservative. Here we take the value of o = 0.8

-1 L
10 .\.‘“ho
ot
= L
5 .
Q i e
07} Tl
v A
L e N = 2048 EREY
—4— N = 8192 .
- {
10 10 1 1 I 1
100 102 104

S

Fig. 1 Log-log plot of the probability distribution P(s, N) for
nearest neighbor sites ¢ = 4 and defects ¢ = v/ N with different
system sizes when the system is conservative. The data have
been binned over exponentially increasing sizes with base 1.1.
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Fig. 3 Log-log plot of the probability distribution P(s, N) for
the system size N = 1024 and the defects ¢ = 32 with different
nearest neighbor sites ¢q. For visual clarity, the curves for ¢ = 4
is shifted in the downward direction.

(20% of the force in the toppling site is dissipated), the
nearest neighbor sites ¢ = 4 and the defects ¢ = v/N with
different system sizes N = 1024, 2048. As shown in Fig. 4,
it is clear that the cutoff in the avalanche size distribution
does not grow with system size, i.e., no scaling is present
This is in contrast to
what happens in the quenched random graph, where the
earthquake model displays critical behavior even the sys-
tem is nonconservative. !

when system is nonconservative.
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Fig. 2 Data collapse analysis of the case with nearest neigh-
bor sites ¢ = 4, the defects ¢ = v/N and the system sizes
N = 1024, 2048, 8192, respectively. The critical exponents
are =154, D = 1.12.
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Fig. 4 Log-log plot of the distribution probability P(s, N) for
the nearest neighbor sites ¢ = 4 and the defects ¢ = VN with
different system sizes when 20% of the force in the toppling
site is dissipated.

Inhomogeneities are necessary to break the periodicity of the system to ensure that the system can reach critical
state. The system with v/ IV defects in our model has been studied here. Different defects of the system may result in
different conclusion, and it is difficult to get the maximal number of defects to make sure that the system still displays

critical behavior.

4 Conclusion

In this paper, we have presented a new earthquake model based on a random network, on which every site has
the same number of nearest neighbors with a number of defects distributed randomly on the random network. The
introduction of the inhomogeneities in our model is the necessary condition that the system can reach critical state.
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The toppling mechanism of the system is that the force of the unstable site is redistributed to their nearest neighbors
randomly. It is shown that when the system is conservative, the probability distribution P(s, N) displays power-law
behavior, and P(s, N) satisfies the FSS hypothesis. However, it displays no scaling behavior when the system is
nonconservative. This is the same with the RN OFC model. But this is quite different to the model on quenched
random graphl®! and the model on square lattice,['?! both of which display criticality even the system is dissipated. It
seems that the toppling mechanism of the system has affected the critical behavior of the system. We also compare the
critical behavior of our model with different number of nearest neighbors. It is shown that different spatial topology
does not alter the critical behavior of the system.
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