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A No-Go Theorem for Nonlinear Canonical Quantization∗
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Abstract We want to point out the following strengthening of the classical theorem of Groenewold and van Hove:
There exists no mapping Op from polynomial observables f(p, q) on the phase space R2n into linear operators on L2(Rn)
which would map Poisson brackets into commutators, the position and momentum observables p and q into the usual
(Schrödinger) position and momentum operators, and would obey the von Neumann rule Op(cfk) = c Op(f)k for k = 1, 2, 3
and c ∈ R. The point is that neither linearity, nor continuity etc. of Op are assumed.
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The original concept of quantization, going back to
Weyl, von Neumann and Dirac,[1−3] consists in assigning
(trying to assign) to the observables — real-valued func-
tions f(p, q) of (p, q) ∈ Rn ×Rn — self-adjoint operators
Op(f) on the Hilbert space L2(Rn) in such a way that

(i) the correspondence f 7→ Op(f) is linear;
(ii) for any function φ : R → R for which this makes

sense, Op(φ ◦ f) = φ(Op(f)) (the von Neumann
rule);

(iii) the operators Op(pj) and Op(qj) corresponding to
the coordinate functions pj , qj (j = 1, . . . , n) are
given by

Op(qj)f = qjf, Op(pj)f =
ih
2π

∂f

∂qj
,

∀f = f(q) ∈ L2(Rn) ;

(iv) [Op(f), Op(g)] = ih
2πOp({f, g}), where

{f, g} =
n∑

j=1

( ∂f
∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
is the Poisson bracket of f and g.

Note that it is a special case φ = 1 of axiom (i), as well
as f = p1, g = q1 of axiom (ii), that

Op(1) = I ,

where 1 is the function constant one and I the iden-
tity operator. The domain of definition of the mapping
Op — the space of quantizable observables — must con-
tain the constants and the coordinate functions pj and qj
(j = 1, . . . , n), and one would of course like this set to be
as large as possible — ideally, it should include at least
C∞(Rn), or some other nice function space.

Unfortunately, it is well known that the axioms (i) ∼
(iv) are not quite consistent. First of all, using axioms
(i) ∼ (iii) it is possible to express Op(f) for f(p, q) =

p2
1q

2
1 = (p1q1)2 in two ways with two different results;

thus axiom (ii) cannot be satisfied if axioms (i) and (iii)
hold and p2

1, q
2
1 , p1q1 and p2

1q
2
1 ∈ dom(Op). (The von

Neumann rule (ii) is even used only for the squaring func-
tion φ(t) = t2; see Folland[4] and Arens and Babbitt[5]).
Secondly, it is a result of Groenewold,[6] later elaborated
further by van Hove,[7] that axiom (iv) fails whenever ax-
ioms (i) and (iii) are satisfied and the space of quantizable
observables contains all polynomials in p, q of degree not
exceeding four. (see e.g. Gotay[8] for a recent survey of
these matters.)

There are two traditional approaches to handle this
disappointing situation. The first is to keep the three ax-
ioms (i), (iii) and (iv) (possibly giving up only the von
Neumann rule (ii)) but cut down the space of quantiz-
able observables (for instance, to functions at most linear
in p). This is one of the underlying ideas of geometric
quantization. The second approach is to keep axioms (i)
and (iii), but require axiom (iv) to hold only asymptoti-
cally as the Planck constant h tends to zero. This leads
to deformation quantization.

There is, however, a third possibility — namely, to in-
sist on the axioms (ii), (iii) and (iv), but discard (i) (the
linearity). (Note that by axiom (ii) with φ(t) = ct, we will
still have at least homogeneity, i.e., Op(cf) = cOp(f) for
any constant c.) This idea goes back to Tuynman, who
writes in §5.1 in Ref. [9] that he does not “· · · know of a
physical motivation for this linearity condition, but it is
certainly desirable from the computational point of view.”

In fact, such nonlinear assignments do actually arise
already in some existing approaches to geometric quan-
tization, namely when one tries to extend the space of
quantizable observables by using the Blattner–Kostant–
Sternberg kernel method: for instance, for observables of
the form p2f(q) on R1 it can be computed (see Bao and
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Zhu[10]) that the corresponding operator assigned by the
BKS method is given by

Op(p2f(q))ψ =
( ih

2π

)2[
fψ′′ + f ′ψ′ +

(f ′′
4
− f ′2

16f

)
ψ

]
,

which is manifestly nonlinear in f . Note that, remark-
ably, since the operator corresponding to pf(q) is given
by (loc. cit.) Op(pf(q))ψ = −(ih/2π)(fψ′ + 1

2f
′ψ), this

correspondence further satisfies the von Neumann rule (ii)
for the squaring function, i.e. Op(pf(q))2 = Op(p2f(q)2).

These considerations lead to the following question:
Does there exist a map Op from, say, the space of polyno-
mials in p, q into formally self-adjoint linear operators on
L2(Rn) which would obey the rules (ii) (von Neumann),
(iii) (Schrödinger) and (iv) (brackets), but not necessarily
(i) (linearity)?

We want to point out that, unfortunately, there is a
simple no-go theorem also in this case.
Theorem Let P be the vector space of all real polyno-
mials in p, q of degree ≤ 3. Then there is no mapping Op
from P into operators which would satisfy (ii) ∼ (iv).
Proof By Eq. (1), for any k,m = 1, 2, . . .,

{pk
1 , q

m
1 } = kmpk−1

1 qm−1
1 .

Thus by axiom (iv),

Op(pk−1
1 qm−1

1 ) =
1

ckm
[P k, Qm] ,

where for brevity we write Op(p1) = P , Op(q1) = Q and
c = ih/2π. Now by axiom (iii) and the Leibniz rule,

P kQmf =
k∑

j=0

(
k

j

)
(P k−jqm

1 )P jf

=
k∑

j=0

(
k

j

)
m! ck−j

(m− k + j)!
Qm−k+j P jf ,

so

[P k, Qm] =
k−1∑
j=0

(
k

j

)
m! ck−j

(m− k + j)!
Qm−k+j P j

=
k∑

l=1

(
k

l

)
m! cl

(m− l)!
Qm−lP k−l .

In particular, taking k = m = 2 gives

Op(p1q1) =
2c2 + 4cQP

4c
=
PQ+QP

2
,

while for k = m = 3 we get

Op(p2
1q

2
1) =

6c3 + 18c2QP + 9cQ2P 2

9c

=
2
3
c2 + 2cQP +Q2P 2 .

As(PQ+QP

2

)2

=
( c

2
+QP

)2

=
c2

4
+ 2cQP +Q2P 2 ,

we thus see that Op(p2
1q

2
1) 6= Op(p1q1)2, contradicting ax-

iom (ii). Thus Op cannot exist.
Note that not only the correspondence Op : f 7→ Op(f),

but even the operators Op(f) themselves need not be as-
sumed to be linear. Also, axiom (ii) was used only for
φ(t) = t2, φ(t) = t3 and φ(t) = at, a ∈ R.

We remark that from a purely mathematical view-
point, it can, in fact, be shown that already axioms (ii)
and (iii) by themselves lead to a contradiction, unless one
puts some restriction on the functions φ in (ii) or on the
domain of the mapping Op (the space of quantizable ob-
servables). Namely, recall that there exists a continuous
function f (Peáno curve) which maps R continuously and
surjectively onto R2n. Let g be a right inverse for f , so
that g : R2n → R and f ◦ g = id; such g exists owing
to the surjectivity of f , and can be chosen to be measur-
able and locally bounded. Set T = Op(g) and consider the
functions φ = p1 ◦ f , ψ = q1 ◦ f . Then by axiom (ii),

φ(T ) = Op(p1 ◦ f ◦ g) = P, ψ(T ) = Op(q1 ◦ f ◦ g) = Q ,

and

0 = (φψ − ψφ)(T ) = φ(T )ψ(T )− ψ(T )φ(T )

= [P,Q] =
ih
2π
I ,

a contradiction. Thus axiom (ii) cannot hold for all
φ ∈ C(R) if axiom (iii) holds and g belongs to the domain
of Op (i.e. to the quantizable observables). In the phys-
ical realm, however, one usually deals only with smooth
observables, which rules out such pathologies.

References

[1] P.A.M. Dirac, The Principles of Quantum Mechanics, 3rd
ed., Oxford, London (1947).

[2] J. von Neumann, Mathematical Foundations of Quantum
Mechanics, Princeton University Press, Princeton (1955).

[3] H. Weyl, The Theory of Groups and Quantum Mechanics,
Dover, New York (1931).

[4] G.B. Folland, Annals of Mathematics Studies, Princeton
University Press, Princeton (1989) Vol. 122.

[5] R. Arens and D. Babbitt, J. Math. Phys. 6 (1965) 1071.

[6] H.J. Groenewold, Physica 12 (1946) 405.

[7] L. van Hove, Mem. Acad. Roy. de Belgique, Classe des
Sci. 26 (1951) No. 6.

[8] M.J. Gotay, “Obstructions to Quantization”, The Juan
Simo Memorial Volume, eds J. Marsden and S. Wiggins,
Springer Verlag, Berlin-Heidelberg-New York (2000).

[9] G.M. Tuynman, Mathematical Structures in Field The-
ory, (Proc. Seminar 1989–1990), CWI Syllabi 39 Math.
Centrum, CWI, Amsterdam (1996) pp. 1–28.

[10] D.H. Bao and Z.Y. Zhu, J. Phys. A25 (1992) 2381.


