Quantum information processing with nuclear spins mediated by a weak-mechanically controlled electron spin

Wan-Jun Su, Guang-Zheng Ye, Ya-Dong Wu, Zhen-Biao Yang, Barry C Sanders

Communications in Theoretical Physics ›› 2022, Vol. 74 ›› Issue (5) : 55102.

PDF(1216 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(1216 KB)
Communications in Theoretical Physics ›› 2022, Vol. 74 ›› Issue (5) : 55102. DOI: 10.1088/1572-9494/ac56d1
Quantum Physics and Quantum Information

Quantum information processing with nuclear spins mediated by a weak-mechanically controlled electron spin

Author information +
History +

Abstract

We propose a scheme to achieve nuclear-nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy (NV) center in a diamond. Here we demonstrate two-qubit entangling gates and quantum-state transfer between two carbon nuclei. When the dipole-dipole interaction strength is much larger than the driving field strength, the scheme is robust against decoherence caused by coupling between the NV center (nuclear spins) and the environment. Conveniently, precise control of dipole coupling is not required so this scheme is insensitive to fluctuating positions of the nuclear spins and the NV center. Our scheme provides a general blueprint for multi-nuclear-spin gates and for multi-party communication.

Key words

dipole-dipole interaction / mechanically control / NV center / quantum Zeno effect

Cite this article

Download Citations
Wan-Jun Su, Guang-Zheng Ye, Ya-Dong Wu, et al. Quantum information processing with nuclear spins mediated by a weak-mechanically controlled electron spin[J]. Communications in Theoretical Physics, 2022, 74(5): 55102 https://doi.org/10.1088/1572-9494/ac56d1

References

1
Kane B E 1998 Nature (London) 393 133
2
Lvovsky A Sanders B C Tittel W 2009 Nat. Photon 3 706
3
Morton J J L Tyryshkin A M Brown R M Shankar S Lovett B W Ardavan A Schenkel T Haller E E Ager J W Lyon S A 2008 Nature (London) 455 1085
4
Sage D L Arai K Glenn D R DeVience S J Pham L M Rahn Lee L Lukin M D Yacoby A Komeili A Walsworth R L 2013 Nature (London) 496 486
5
Cai J-M Jelezko F Plenio M B Retzker A 2013 New J. Phys. 15 013020
6
Bernien H 2013 Nature (London) 497 86
7
Li P-B Xiang Z-L Rabl P Nori F 2016 Phys. Rev. Lett. 117 015502
8
Kato Y K Epstein R J Mendoza F M Awschalom D D 2005 Nat. Phys. 1 94
9
Lee-Wong E Ding J Wang X Liu C McLaughlin N J Wang H Wu M Du C R 2021 Phys. Rev. Appl. 15 034031
10
Lu Y-N Zhang Y-R Liu G-Q Nori F Fan H Pan X-Y 2020 Phys. Rev. Lett. 124 210502
11
Li P-B Liu Y-C Gao S-Y Xiang Z-L Rabl P Xiao Y-F Li F-L 2015 Phys. Rev. Appl. 4 044003
12
Chen Q Schwarz I Plenio M B 2017 Phys. Rev. Lett. 119 010801
13
Rabl P Kolkowitz S J Koppens F H L Harris J G E Zoller P Lukin M D 2010 Nat. Phys. 6 602
14
D'Urso B Dutt M V G Dhingra S Nusran N M 2011 New J. Phys. 13 045002
15
Kepesidis K V Bennett S D Portolan S Lukin M D Rabl P 2013 Phys. Rev. B 88 064105
16
Golter D A Oo T Amezcua M Lekavicius I Stewart K A Wang H 2016 Phys. Rev. X 6 041060
17
Su W-J Yang Z-B Wu H-Z 2017 Opt. Commun. 383 101
18
MacQuarrie E R Gosavi T A Jungwirth N R Bhave S A Fuchs G D 2013 Phys. Rev. Lett. 111 227602
19
Togan E 2010 Nature (London) 466 730
20
Felton S Edmonds A M Newton M E Martineau P M Fisher D Twitchen D J Baker J M 2009 Phys. Rev. B 79 075203
21
Facchi P Pascazio S 2008 J. Phys. A 41 493001
22
Yao N Y Gong Z-X Laumann C R Bennett S D Duan L-M Lukin M D Jiang L Gorshkov A V 2013 Phys. Rev. A 87 022306
23
Zeng H-S Ren Y-K Wang X-L He Z 2019 Quantum Inf. Process 18 378
24
Meystre P 2001 Atom Optics New York Springer
25
Bauch E Singh S Lee J Hart C A Schloss J M Turner M J Barry J F Pham L Yelin S F Walsworth R L 2020 Phys. Rev. B 102 134210 arxiv:1904.08763
26
Gaebel T 2006 Nat. Phys. 2 408
27
Uhlmann A 1976 Rep. Math. Phys. 9 273
28
Banchi L Bayat A Verrucchi P Bose S 2011 Phys. Rev. Lett. 106 140501
29
Yang Z-B Wu H-Z Su W-J Zheng S-B 2009 Phys. Rev. A 80 012305
30
Lloyd S 1993 Science 261 1569
31
Berry D W Sanders B C 2003 Phys. Rev. Lett. 90 057901
32
Zheng S-B Guo G-C 2000 Phys. Rev. Lett. 85 2392
33
Bayat A Omar Y 2015 New J. Phys. 17 103041
34
Cramer J Kalb N Rol M A Hensen B Blok M S Markham M Twitchen D J Hanson R Taminiau T H 2016 Nat. Commun. 7 11526
35
MacQuarrie E R Gosavi T A Bhave S A Fuchs G D 2015 Phys. Rev. B 92 224419
36
Maze J R 2008 Nature (London) 455 644
37
Hanson R Mendoza F M Epstein R J Awschalom D D 2006 Phys. Rev. Lett. 97 087601
38
Yao N Y Laumann C R Gopalakrishnan S Knap M Müller M Demler E A Lukin M D 2014 Phys. Rev. Lett. 113 243002
39
Mei F Guo Q Yu Y-F Xiao L Zhu S-L Jia S 2020 Phys. Rev. Lett. 125 160503
40
Moerner W E Orrit M 1999 Science 283 1670
41
Liu H-B Plenio M B Cai J-M 2017 Phys. Rev. Lett. 118 200402
42
Chen Q Schwarz I Plenio M B 2017 Phys. Rev.B 95 224105

Acknowledgments

The authors acknowledge J P Hadden and H-Z Wu for helpful discussions and suggestions. This work is supported by the National Natural Science Foundation of China under Grant No. 11405031 and No.11875108, the National Natural Science Foundation of Fujian Province China under Grant No. 2019J01219.

Funding

the National Natural Science Foundation of China(11405031)
the National Natural Science Foundation of China(11875108)
the National Natural Science Foundation of Fujian Province china(2019J01219.)

RIGHTS & PERMISSIONS

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing
PDF(1216 KB)

Accesses

Citation

Detail

Sections
Recommended

/