
Magnetic correction to the anomalous magnetic moment of electrons
Fan Lin, Mei Huang
Communications in Theoretical Physics ›› 2022, Vol. 74 ›› Issue (5) : 55202.
Magnetic correction to the anomalous magnetic moment of electrons
We investigate the leading order correction of anomalous magnetic moment (AMM) to electrons in a weak magnetic field and find that the magnetic correction is negative and magnetic field dependent, indicating a magnetic catalysis effect for the electron gas. In the laboratory, to measure the g − 2, the magnitude of the magnetic field B is several T, and correspondingly the magnetic correction to the AMM of electron/muon is around 10−34/10−42, therefore the magnetic correction can be safely neglected in the current measurement. However, when the magnitude of the magnetic field strength is comparable with the electron mass, the magnetic correction of the electron's AMM will become considerable. This general magnetic correction to the charged fermion's AMM can be extended to study quantum chromodynamic matter under a strong magnetic field.
anomalous magnetic moment / magnetic correction / magnetic field {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
We thank Xinyang Wang and Anatoly V. Borisov for their helpful discussions. This work is supported by the NSFC under Grant Nos. 11 725 523 and 11 735 007, Chinese Academy of Sciences under Grant No.XDPB15 and XDB34000000, the start-up funding from University of Chinese Academy of Sciences(UCAS), and the Fundamental Research Funds for the Central Universities.
In order to to manage the Schwinger phase Φ(x, y)Φ(y, z), we have
and the only non-zero terms of Fμν are F12 = − F21 = − B, which gives Then where the new conventions are defined: p∥ · k∥ ≡ p0k0 − p3k3, p⊥ · k⊥ ≡ − p1k1 − p2k2, so p · k = p∥ · k∥ + p⊥ · k⊥. we can integrateAfter Wick rotation k0 → ik0, r → − ir, s → − is, we obtain
the subscript E will be omitted from now on for convenience. Firstly, we do the integral related to t⊥: where whereWhen μ = 1, we can simplify the expression into a more friendly form by Dirac algebra:
Similarly, when μ = 2 with/
〈 |
|
〉 |