
Coherent control of spin tunneling in a driven spin–orbit coupled bosonic triple well
Yuxin Luo, Jia Yi, Wenjuan Li, Xin Xie, Yunrong Luo, Wenhua Hai
Communications in Theoretical Physics ›› 2022, Vol. 74 ›› Issue (5) : 55104.
Coherent control of spin tunneling in a driven spin–orbit coupled bosonic triple well
We investigate the coherent control of spin tunneling for a spin–orbit (SO) coupled boson trapped in a driven triple well. In the high-frequency limit, the quasienergies of the system are obtained analytically and the fine energy band structures are shown. By regulating the driving parameters, we reveal that the directed spin-flipping or spin-conserving tunneling of an SO-coupled boson occurs along different pathways and in different directions. The analytical results are demonstrated by numerical simulations and good agreements are found. Further, an interesting scheme of quantum spin tunneling switch with or without spin-flipping is presented. The results may have potential applications in the design of spintronic devices.
coherent control / spin tunneling / spin–orbit coupling / triple well {{custom_keyword}} /
Figure 1. Quasienergy as a function of the driving parameter ϵ1/ω for γ = 0.5, ν = 1, ω = 50, Ω = 100, and (a) ϵ2 = 5.1356ω; (b) ϵ2 = 2ω. Here, circles denote the analytical results and solid curves label the numerical correspondences. Hereafter, any parameter adopted in the figures is dimensionless. |
Figure 2. Time evolutions of the probabilities Pk(t) for the initial conditions P3(0) = 1 and Pk(0) = 0 (k ≠ 3), and the system parameters γ = 0.5, ν = 1, ω = 50, Ω = 100, and (a) ϵ1 = 2ω, ϵ2 = 5.1356ω; (b) ϵ1 = ϵ2 = 5.1356ω; (c) ϵ1 = 5.1356ω, ϵ2 = 2ω. Dashed lines denote the analytical results and solid curves label the numerical correspondences. |
Figure 3. (a) Time evolutions of the probabilities Pk(t) for the initial conditions P1(0) = 1 and Pk(0) = 0 (k ≠ 1), and the system parameters γ = 0.5, ν = 1, ω = 50, Ω = 100, and ϵ1 = ϵ2 = 5.1356ω in intervals 0 ≤ t < t1 = 2, t2 = 6.4 ≤ t < t3 = 8.4, t ≥ t4 = 12.8, and ϵ1 = 2ω, ϵ2 = 5.1356ω in t1 = 2 ≤ t < t2 = 6.4, and ϵ1 = 5.1356ω, ϵ2 = 2ω in t3 = 8.4 ≤ t < t4 = 12.8. (b) A schematic diagram showing the spatial distribution of the spin particle. The time intervals △t1 = △t2 = t2 − t1 = t4 − t3 = 4.4 denote the transferring time between the different populations. |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported by the Scientific Research Foundation of Hunan Provincial Education Department under Grants No. 21B0063 and No. 18C0027, the Hunan Provincial Natural Science Foundation of China under Grants No. 2021JJ30435 and No. 2017JJ3208, and the National Natural Science Foundation of China under Grant No. 11747034.
/
〈 |
|
〉 |