Data-driven parametric soliton-rogon state transitions for nonlinear wave equations using deep learning with Fourier neural operator

Ming Zhong, Zhenya Yan, Shou-Fu Tian

Communications in Theoretical Physics ›› 2023, Vol. 75 ›› Issue (2) : 25001.

PDF(1779 KB)
Welcome to visit Communications in Theoretical Physics,
PDF(1779 KB)
Communications in Theoretical Physics ›› 2023, Vol. 75 ›› Issue (2) : 25001. DOI: 10.1088/1572-9494/acab55
Mathematical Physics

Data-driven parametric soliton-rogon state transitions for nonlinear wave equations using deep learning with Fourier neural operator

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
History +

HeighLight

{{article.keyPoints_en}}

Abstract

{{article.zhaiyao_en}}

Key words

QR code of this article

Cite this article

Download Citations
{{article.zuoZheEn_L}}. {{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2023, 75(2): 25001 https://doi.org/10.1088/1572-9494/acab55

References

References

{{article.reference}}

Funding

RIGHTS & PERMISSIONS

{{article.copyrightStatement_en}}
{{article.copyrightLicense_en}}
PDF(1779 KB)

Accesses

Citation

Detail

Sections
Recommended

/