
Study of the gluonic quartic gauge couplings at muon colliders
Ji-Chong Yang, Yu-Chen Guo, Yi-Fei Dong
Communications in Theoretical Physics ›› 2023, Vol. 75 ›› Issue (11) : 115201.
Study of the gluonic quartic gauge couplings at muon colliders
The potential of muon colliders opens up new possibilities for the exploration of new physics beyond the Standard Model. It is worthwhile to investigate whether muon colliders are suitable for studying gluonic quartic gauge couplings (gQGCs), which can be contributed by dimension-8 operators in the framework of the Standard Model effective field theory, and are intensively studied recently. In this paper, we study the sensitivity of the process
gluonic quartic gauge coupling (gQGC) / effective field theory (EFT) / muon collider / Vector Boson Fusion (VBF) {{custom_keyword}} /
Table 1. The upper bounds of coefficients ∣fi∣ and lower bounds of Mi in the sense of partial wave unitarity at different energies. |
3 | 10 | 14 | 30 | |
∣f0∣(TeV−4) | 3.5 | 0.028 | 0.0074 | 0.00035 |
M0(GeV) | 365.56 | 1222.31 | 1704.76 | 3655.55 |
∣f1∣(TeV−4) | 10.5 | 0.085 | 0.022 | 0.001 |
M1(GeV) | 277.76 | 926.01 | 1298.27 | 2811.71 |
∣f2,3∣(TeV−4) | 14.0 | 0.114 | 0.030 | 0.004 |
M2,3(GeV) | 258.49 | 860.49 | 1201.41 | 1988.18 |
Table 2. The cross-sections of the SM contribution and the upper bounds of coefficients ∣fi∣ used in the phenomenological study. The cross-sections of the gQGCs are also shown. |
3 | 10 | 14 | 30 | |
σSM(pb) | 0.8688 | 1.4548 | 1.6087 | 1.8988 |
∣f0∣(TeV−4) | 1 | 0.012 | 0.004 | 0.00035 |
σgT,0(pb) | 0.00321 | 0.00115 | 0.00112 | 0.00114 |
∣f1∣(TeV−4) | 1.5 | 0.02 | 0.007 | 0.0006 |
σgT,1(pb) | 0.00355 | 0.00138 | 0.00144 | 0.00134 |
∣f2,3∣(TeV−4) | 3 | 0.03 | 0.012 | 0.0012 |
σgT,2(pb) | 0.00383 | 0.000956 | 0.00134 | 0.00178 |
σgT,3(pb) | 0.00412 | 0.000924 | 0.00127 | 0.00161 |
Table 3. The event selection strategies at different energies. |
mjj | ||
---|---|---|
(TeV) | ||
3 | >50 GeV | >1 TeV |
10 | >100 GeV | >3 TeV |
14 | >100 GeV | >5 TeV |
30 | >200 GeV | >10 TeV |
Table 4. The contributions of the SM and gQGCs after cuts. The efficiencies of the cuts are shown in the last row. |
cut | SM | OgT,0 | OgT,1 | OgT,2 | OgT,3 | |
---|---|---|---|---|---|---|
(TeV) | (fb) | (fb) | (fb) | (fb) | (fb) | |
Nj | 722.9 | 3.21 | 3.52 | 3.82 | 4.10 | |
3 | 536.7 | 3.15 | 3.47 | 3.74 | 4.04 | |
mjj | 0.885 | 2.49 | 2.27 | 2.85 | 2.74 | |
ε | 0.102% | 77.6% | 63.9% | 74.4% | 66.5% | |
cut | SM | OgT,0 | OgT,1 | OgT,2 | OgT,3 | |
(TeV) | (fb) | (fb) | (fb) | (fb) | (fb) | |
Nj | 1191.9 | 1.15 | 1.37 | 0.955 | 0.921 | |
10 | 508.2 | 1.12 | 1.34 | 0.930 | 0.902 | |
mjj | 0.256 | 0.961 | 1.06 | 0.799 | 0.728 | |
ε | 0.0176% | 83.6% | 76.8% | 83.6% | 78.8% | |
cut | SM | OgT,0 | OgT,1 | OgT,2 | OgT,3 | |
(TeV) | (fb) | (fb) | (fb) | (fb) | (fb) | |
Nj | 1315.5 | 1.12 | 1.43 | 1.34 | 1.26 | |
14 | 531.9 | 1.10 | 1.42 | 1.31 | 1.24 | |
mjj | 0.105 | 0.846 | 1.02 | 1.03 | 0.916 | |
ε | 0.00653% | 75.5% | 70.8% | 76.9% | 72.1% | |
cut | SM | OgT,0 | OgT,1 | OgT,2 | OgT,3 | |
(TeV) | (fb) | (fb) | (fb) | (fb) | (fb) | |
Nj | 1542.4 | 1.14 | 1.33 | 1.78 | 1.61 | |
30 | 256.4 | 1.11 | 1.30 | 1.73 | 1.57 | |
mjj | 0.0532 | 0.914 | 1.04 | 1.46 | 1.27 | |
ε | 0.00280% | 80.2% | 77.6% | 82.0% | 78.9% |
Table 5. The projected sensitivities on the aQGC coefficients at the muon colliders with different c.m. energies and integrated luminosities for the ‘conservative' case. |
3 TeV | 10 TeV | 14 TeV | 30 TeV | ||
---|---|---|---|---|---|
1 ab−1 | 10 ab−1 | 10 ab−1 | 10 ab−1 | ||
2 | <155 | <1.24 | <0.351 | <0.025 | |
∣f0∣ | 3 | <191 | <1.52 | <0.432 | <0.03 |
(10−3TeV−4) | 5 | <248 | <1.96 | <0.561 | <0.04 |
2 | >0.796 | >2.67 | >3.65 | >7.07 | |
M0 | 3 | >0.756 | >2.53 | >3.47 | >6.71 |
(TeV) | 5 | >0.709 | >2.38 | >3.25 | >6.29 |
2 | <244 | <1.96 | <0.561 | <0.040 | |
∣f1∣ | 3 | <300 | <2.41 | <0.689 | <0.049 |
(10−3TeV−4) | 5 | <389 | <3.11 | <0.893 | <0.064 |
2 | >0.711 | >2.38 | >3.25 | >6.28 | |
M1 | 3 | >0.675 | >2.26 | >3.09 | >5.96 |
(TeV) | 5 | >0.633 | >2.12 | >2.89 | >5.58 |
2 | <436 | <3.39 | <0.957 | <0.068 | |
∣f2∣ | 3 | <535 | <4.16 | <1.17 | <0.083 |
(10−3TeV−4) | 5 | <695 | <5.38 | <1.52 | <0.109 |
2 | >0.615 | >2.07 | >2.84 | >5.07 | |
M2 | 3 | >0.585 | >1.97 | >2.70 | >5.23 |
(TeV) | 5 | >0.548 | >1.85 | >2.53 | >4.90 |
2 | <445 | <3.55 | <1.01 | <0.073 | |
∣f3∣ | 3 | <546 | <4.35 | <1.25 | <0.090 |
(10−3TeV−4) | 5 | <709 | <5.64 | <1.62 | <0.116 |
2 | >0.612 | >2.05 | >2.80 | >5.41 | |
M3 | 3 | >0.582 | >1.95 | >2.66 | >5.14 |
(TeV) | 5 | >0.545 | >1.82 | >2.49 | >4.81 |
Table 6. The projected sensitivities on the aQGC coefficients at the muon colliders with different c.m. energies and integrated luminosities for the ‘optimistic' case. |
14 TeV | 30 TeV | ||
---|---|---|---|
20 ab−1 | 90 ab−1 | ||
2 | <2.95 | <0.144 | |
∣f0∣ | 3 | <3.63 | <0.176 |
(10−4TeV−4) | 5 | <4.70 | <0.228 |
2 | >3.81 | >8.12 | |
M0 | 3 | >3.62 | >7.71 |
(TeV) | 5 | >3.40 | >7.23 |
2 | <4.71 | <0.231 | |
∣f1∣ | 3 | <5.78 | <0.284 |
(10−4TeV−4) | 5 | <7.49 | <0.367 |
2 | >3.39 | >7.21 | |
M1 | 3 | >3.23 | >6.85 |
(TeV) | 5 | >3.02 | >6.42 |
2 | <8.03 | <0.390 | |
∣f2∣ | 3 | <9, 86 | <0.479 |
(10−4TeV−4) | 5 | <12.8 | <0.619 |
2 | >2.97 | >6.33 | |
M2 | 3 | >2.82 | >6.01 |
(TeV) | 5 | >2.65 | >5.64 |
2 | <8.52 | <0.419 | |
∣f3∣ | 3 | <10.5 | <0.513 |
(10−4TeV−4) | 5 | <13.5 | <0.664 |
2 | >2.93 | >6.22 | |
M3 | 3 | >2.78 | >5.91 |
(TeV) | 5 | >2.61 | >5.54 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
(ATLAS collaboration) 2014 Evidence for electroweak production of W±W±jj in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
(CMS Collaboration) 2020 Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
(ATLAS collaboration) 2017 Studies of Zγ production in association with a high-mass dijet system in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
(CMS Collaboration) 2017 Measurement of the cross section for electroweak production of Zγ in association with two jets and constraints on anomalous quartic gauge couplings in proton–proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
(CMS Collaboration) 2020 Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
(CMS Collaboration) 2017 Measurement of electroweak-induced production of Wγ with two jets in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
(CMS Collaboration) 2017 Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton–proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
(CMS Collaboration) 2019 Measurement of differential cross sections for Z boson pair production in association with jets at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
(ATLAS collaboration) 2019 Observation of electroweak W±Z boson pair production in association with two jets in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
(CMS Collaboration) 2019 Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
(CMS Collaboration) 2016 Evidence for exclusive γγ → W+W− production and constraints on anomalous quartic gauge couplings in pp collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
(CMS Collaboration) 2018 Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
(CMS Collaboration) 2019 Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV Phys. Lett. B 798 134985
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
(CMS Collaboration) 2020 Observation of electroweak production of Wγ with two jets in proton-proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
(CMS Collaboration) 2021 Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
(NNPDF Collaboration) 2013 Parton distributions with QED corrections Nucl. Phys. B 877 290
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
(DELPHES 3 Collaboration) 2014 DELPHES 3, A modular framework for fast simulation of a generic collider experiment J. High Energy Phys. 2014 57
{{custom_citation.content}}
{{custom_citation.annotation}}
|
87 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
88 |
(Particle Data Group collaboration) 2020 Review of particle physics PTEP 2020 083C01
{{custom_citation.content}}
{{custom_citation.annotation}}
|
89 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 11905093 and 12147214, and the Natural Science Foundation of the Liaoning Scientific Committee No. LJKZ0978.
/
〈 |
|
〉 |