
Ren-integrable and ren-symmetric integrable systems
S Y Lou
Communications in Theoretical Physics ›› 2024, Vol. 76 ›› Issue (3) : 35006.
Ren-integrable and ren-symmetric integrable systems
A new type of symmetry, ren-symmetry, describing anyon physics and corresponding topological physics, is proposed. Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics, super-symmetric gravity, super-symmetric string theory, super-symmetric integrable systems and so on. Super-symmetry and Grassmann numbers are, in some sense, dual conceptions, and it turns out that these conceptions coincide for the ren situation, that is, a similar conception of ren-number (R-number) is devised for ren-symmetry. In particular, some basic results of the R-number and ren-symmetry are exposed which allow one to derive, in principle, some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems. Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.
symmetries / integrable systems / anyon physics / extended supersymmetry / ren-symmetry {{custom_keyword}} /
An R-number
The degree,
Ren-derivative,
A ren-symmetric derivative
To complete the proof of the theorem, it suffices to prove that the compatibility condition
is valid for arbitrary f if (1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
Google Quantum AI and Collaborators 2023 Non-Abelian braiding of graph vertices in a superconducting processor Nature 618 264
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
The work was sponsored by the National Natural Science Foundation of China (Nos. 12235007, 11 975 131). The author wishes to thank Profs. Q P Liu, B F Feng, X B Hu, R X Yao and M Jia and Drs. K Tian, X Z Hao and D D Zhang for their helpful discussions.
Collection(s)
/
〈 |
|
〉 |