
Six types of spin solitons in three-component Bose–Einstein condensates
Yu-Hao Wang, Ling-Zheng Meng, Li-Chen Zhao
Communications in Theoretical Physics ›› 2024, Vol. 76 ›› Issue (6) : 65006.
Six types of spin solitons in three-component Bose–Einstein condensates
Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose–Einstein condensate. Six types of spin soliton solutions can be obtained, and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.
Bose–Einstein condensate / non-integrable / spin soliton / exact analytical solution {{custom_keyword}} /
Figure 1. The extended existence regions for six types of spin soliton solutions in the nonlinearity coefficient space. The origin corresponds to the integrable Manakov model. Cases ‘−1' and ‘−2' are distinguished by the black plane. The black, red, blue and light green surfaces represent F1 = F4, F2 = F4, F1 + F2 − 2F4 = 0 and |
Table 1. Classification of spin solitons based on the difference between nonlinearity coefficients Fi. Condition 1 divides spin soliton solutions into two cases where this condition is opposite. In this paper we mainly discuss case-1 solitons when F1 > F4. If one takes F1 < F4, the soliton solutions for case-2 can be obtained. Different spin solitons are discussed in the main text and shown as sub-figures (a)–(f) in figure 2. The coefficients Fi correspond to the difference between the interaction strengths, F1 = G2 − g11, F2 = G2 − g22, F3 = G2 − g33 and F4 = G2 − G1. |
Constraint conditions | Soliton type | |||
---|---|---|---|---|
Condition 1 | Condition 2 | Condition 3 | Condition 4 | |
F1 > F4 | F2 > F4 | F1 + F2 − 2F4 > 0 | BBD-1(a) | |
DDB-1(d) | ||||
F2 < F4 | F1 + F2 − 2F4 > 0 | DBB-1(c) | ||
BDB-1(b) | ||||
F1 + F2 − 2F4 < 0 | DBD-1(f) | |||
BDD-1(e) |
Figure 2. Mass and spin densities of six types of spin solitons: (a) BBD, (b) BDB, (c) DBB, (d) DDB, (e) BDD and (f) DBD. The red dash-dotted, blue dotted and green dashed lines represent three components, respectively. The total mass densities (black solid line) for all of these spin solitons are uniform. The parameters are: BBD:G1 = −3, G2 = −5, g11 = −6, g22 = −9/2. BDB: G1 = −3, G2 = −1, g11 = −4, g22 = −8/3. DBB: G1 = −7/2, G2 = −23/8, g11 = −4, g22 = −1. DBD: G1 = −2, G2 = −2, g11 = −4, g22 = −1. BDD: G1 = −3, G2 = −3, g11 = −2, g22 = −5. DDB: G1 = −5, G2 = −22/7, g11 = −7/2, g22 = −3. |
Figure 3. Bogoliubov–de Gennes excitation spectra of six types of spin solitons. BBD, BDB, and DBB exhibit a discrete spectrum without imaginary parts, while the DDB spectrum has non-zero imaginary parts and is unstable. When the G1 ≠ G2 spectra of BDD and DBD have non-zero imaginary parts, they are similar to that of DDB. When G1 = G2, BDD-2 and DBD-1 can admit continuous spectra without imaginary parts, which are shown in the lower panels. The parameters are the same as those in figure 2. |
Figure 4. The evolutions of (a) BBD, (b) DDB and (c) DBD according to the original equation ( |
Figure 5. The density redistribution and weak oscillations after the collision between two BBDs. The soliton speeds are much lower than the maximum speed. (a1)–(a3) depict the case with velocities v1 = −v2 = 0.1 and a relative phase Δφ = 0; (b1)–(b3) v1 = −v2 = 0.1 but Δφ = π/2. It can be observed that the density redistribution occurs in both cases and it can be changed by the relative phase of bright solitons. After the collisions, spin solitons experience weak shape oscillations, which are induced by the non-integrability of the system. The nonlinear coefficients are the same as those in figure 2, and the other parameters are: |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported by the National Natural Science Foundation of China (Contract Nos. 12375005 and 12235007), and the Major Basic Research Program of Natural Science of Shaanxi Province (Grant No. 2018KJXX-094).
Collection(s)
/
〈 |
|
〉 |