
Inner-shell ionization cross sections of atoms by positron impact
Yuan-Cheng Wang, Jia Ma, Li-Guang Jiao, Stephan Fritzsche
Communications in Theoretical Physics ›› 2024, Vol. 76 ›› Issue (6) : 65502.
Inner-shell ionization cross sections of atoms by positron impact
The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms (Ni, Cu, Y, Ag, Au, Yb, Ta, and Pb) for positron impact energies from the thresholds up to 105 keV. There is good agreement between the present calculations and the experimental data. The constant in the acceleration term derived from the Wannier law is determined to be 0.2 and 0.5 for the K- and L-shells, respectively.
positron scattering / ionization cross section / binary-encounter-Bethe model {{custom_keyword}} /
Table 1. Binding energy ϵb (eV), kinetic energy |
Element | Subshell | ϵba | q | |
---|---|---|---|---|
Ni | K | 8333 | 10726 | 2 |
Cu | K | 8979 | 11562 | 2 |
Y | K | 17038 | 21930 | 2 |
Ag | K | 25514 | 33385 | 2 |
aBearden et al [35]. |
Table 2. Binding energy ϵb (eV), kinetic energy |
Element | Subshell | ϵba | q | |
---|---|---|---|---|
Ag | L1 | 3806 | 6269 | 2 |
L2 | 3524 | 6949 | 2 | |
L3 | 3351 | 7010 | 4 | |
Yb | L1 | 10 486 | 20484 | 2 |
L2 | 9978 | 20071 | 2 | |
L3 | 8944 | 15481 | 4 | |
Ta | L1 | 11 682 | 23323 | 2 |
L2 | 11 136 | 22788 | 2 | |
L3 | 9881 | 17055 | 4 | |
Au | L1 | 14 353 | 30159 | 2 |
L2 | 13 734 | 29322 | 2 | |
L3 | 11 919 | 20483 | 4 | |
Pb | L1 | 15 861 | 34329 | 2 |
L2 | 15 200 | 33294 | 2 | |
L3 | 13 035 | 22347 | 4 |
aBearden et al [35]. |
Figure 1. K-shell positron impact ionization cross sections of the Ni, Cu, Y, and Ag atoms are shown in (a)-(d), respectively. The results of the present work RBEB-W (black solid curve) and RBEB (green dashed dotted dotted curve) are compared with the DWBA (blue short dashed curve) results by Bote et al [24], and the PWBA (red dashed curve) results by Khare et al [25]. Comparison of the theoretical results with the experimental data by Seif el Nasr et al [31], Schneider et al [32] and Nagashima et al [33] are also shown. |
Figure 2. L-shell positron impact ionization cross sections of the (a) Ag, (b) Yb, (c) Ta, (d) Au, and (e) Pb atoms, respectively. The sub-figure (f) is for L3-shell ionization of Au. The results of the present work RBEB-W (black solid curve) and RBEB (green dashed dotted dotted curve) are compared with the DWBA (blue short dashed curve) results by Bote et al [24], and the PWBA (red dashed curve) results by Khare et al [25]. Comparison of the theoretical results with the experimental data by Seif el Nasr et al [31], Nagashima et al [33], and Schneider et al [32] are also shown. |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported by the National Natural Science Foundation of China (Grant No. 12174147) and the Chinese Scholarship Council (Grant Nos. 202108210152 and 202006175016).
Collection(s)
/
〈 |
|
〉 |