
Rotating effects on the photoionization cross-section of a 2D quantum ring
Carlos Magno O Pereira, Frankbelson dos S Azevedo, Luís Fernando C Pereira, Edilberto O Silva
Communications in Theoretical Physics ›› 2024, Vol. 76 ›› Issue (10) : 105701.
Rotating effects on the photoionization cross-section of a 2D quantum ring
In this article, we investigate the nonrelativistic quantum motion of a charged particle within a rotating frame, taking into account the Aharonov–Bohm (AB) effect and a uniform magnetic field. Our analysis entails the derivation of the equation of motion and the corresponding radial equation to describe the system. Solving the resulting radial equation enables us to determine the eigenvalues and eigenfunctions, providing a clear expression for the energy levels. Furthermore, our numerical analysis highlights the substantial influence of rotation on both energy levels and optical properties. Specifically, we evaluate the photoionization cross-section with and without the effects of rotation. To elucidate the impact of rotation on the photoionization process of the system, we present graphics that offer an appealing visualization of the intrinsic nature of the physics involved.
photoionization cross-section / rotating effect / quantum ring / Aharonov–Bohm effect {{custom_keyword}} /
Figure 1. Graphs illustrating the PCS as a function of photon energy for various values of the average radius r0, with a fixed value of ℏω0 = 25 meV. The graphs specifically depict the transition (n = 0, m = 0) to (n = 0, m = −1), where (a) corresponds to Ω = 0 and (b) corresponds to Ω = 1 THz. The bluish region with solid curves corresponds to a fixed value of the magnetic flux, φ = 0.1 (hc/e), and the dashed curves outside this region represent the value of magnetic flux φ = 0.8 (hc/e). |
Figure 2. The same graphs as those in figure 1, representing the transition (n = 0, m = 0) to (n = 0, m = 1). (a) Corresponds to Ω = 0, and (b) corresponds to Ω = 1 THz. The bluish region with solid curves corresponds to a fixed value of the magnetic flux, φ = 0.3 (hc/e), while the dashed curves outside this region represent the value of magnetic flux φ = 0.01 (hc/e). |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was partially supported by the Brazilian agencies CAPES, CNPq, and FAPEMA. EO Silva acknowledges the support from the grants CNPq/306308/2022-3, FAPEMA/UNIVERSAL-06395/22, FAPEMA/APP-12256/22. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) — Finance Code 001. FS Azevedo acknowledges CNPq Grant No. 153635/2024-0.
Collection(s)
/
〈 |
|
〉 |