Nonlinear waves for a variable-coefficient modified Kadomtsev–Petviashvili system in plasma physics and electrodynamics

Guang-Mei Wei, Yu-Xin Song, Tian-Chi Xing, Shu Miao

Communications in Theoretical Physics ›› 2025, Vol. 77 ›› Issue (1) : 15003.

PDF(889 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(889 KB)
Communications in Theoretical Physics ›› 2025, Vol. 77 ›› Issue (1) : 15003. DOI: 10.1088/1572-9494/ad782d
Mathematical Physics

Nonlinear waves for a variable-coefficient modified Kadomtsev–Petviashvili system in plasma physics and electrodynamics

Author information +
History +

Abstract

In this paper, a variable-coefficient modified Kadomtsev–Petviashvili (vcmKP) system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and nonlinear waves in plasma physics and electrodynamics. Painlevé analysis is given out, and an auto-Bäcklund transformation is constructed via the truncated Painlevé expansion. Based on the auto-Bäcklund transformation, analytic solutions are given, including the solitonic, periodic and rational solutions. Using the Lie symmetry approach, infinitesimal generators and symmetry groups are presented. With the Lagrangian, the vcmKP equation is shown to be nonlinearly self-adjoint. Moreover, conservation laws for the vcmKP equation are derived by means of a general conservation theorem. Besides, the physical characteristics of the influences of the coefficient parameters on the solutions are discussed graphically. Those solutions have comprehensive implications for the propagation of solitary waves in nonuniform backgrounds.

Key words

modified Kadomtsev-Petviashvili equation / Lie symmetry / optimal system / nonlinear self-adjointness / conservation law / symbolic computation

Cite this article

Download Citations
Guang-Mei Wei, Yu-Xin Song, Tian-Chi Xing, et al. Nonlinear waves for a variable-coefficient modified Kadomtsev–Petviashvili system in plasma physics and electrodynamics[J]. Communications in Theoretical Physics, 2025, 77(1): 15003 https://doi.org/10.1088/1572-9494/ad782d

References

1
Abdelwahed H G, El-Shewy E K, Abdelrahman M A E, El-Rahmanf A A 2021 Positron nonextensivity contributions on the rational solitonic, periodic, dissipative structures for VCMKP equation described critical plasmas Adv. Space Res. 67 3260 3266
2
Seadawy A R, El-Rashidy K 2018 Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma Results Phys. 8 1216 1222
3
Veerakumar V, Daniel M 2003 Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton Math. Comput. Simulation 62 163 169
4
Sun Z Y, Gao Y T, Yu X, Meng X H, Liu Y 2009 Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics Wave Motion 46 511 521
5
Grimshaw R, Pelinovsky D, Pelinovsky E, Talipova T 2001 Wave group dynamics in weakly nonlinear long-wave models Physica D 159 35 57
6
Han P F, Zhang Y 2024 Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional Sharma-Tasso-Olver-like equation Eur. Phys. J. Plus 139 157
7
Wang D S, Shi Y R, Feng W X, Wen L 2017 Dynamical and energetic instabilities of F = 2 spinor Bose-Einstein condensates in an optical lattice Physica D 351-352 30 41
8
Hirota R 1971 Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons Phys. Rev. Lett. 27 1192 1193
9
Matveev V B, Salle M A 1986 Scattering of solitons in the formalism of the Darboux transform J. Math. Sci. 34 1983 1987
10
Matveev V B, Salle M A 1991 Darboux Transformations and Solitons Springer
11
Xu L, Wang D S, Wen X Y, Jiang Y L 2020 Exotic localized vector waves in a two-component nonlinear wave system J. Nonlinear. Sci. 30 537 564
12
Rogers C, Schief W K 2002 Bäcklund and Darboux Transformation Geometry and Modern Applications in Soliton Theory Cambridge University Press
13
Weiss J 1983 The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative J. Math. Phys. 24 1405 1413
14
Ma W X 2020 Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations J. Geom. Phys. 157 103845
15
Wang D S, Deng S, Zhu X D 2022 Direct and inverse scattering problems of the modified Sawada-Kotera equation: Riemann-Hilbert approach Proc. R. Soc. A. 478 20220541
16
Aslan I 2011 Comment on: application of Exp-function method for (3+1)-dimensional nonlinear evolution equations Comput. Math. Appl. 61 1700 1703
17
Wang M L 1996 Exact solutions for a compound KdV-Burgers equation Phys. Lett. A 213 279 287
18
Shukri S, Al-Khaled K 2010 The extended tanh method for solving systems of nonlinear wave equations Appl. Math. Comput. 217 1997 2006
19
Adem A R 2017 Symbolic computation on exact solutions of a coupled Kadomtsev-Petviashvili equation: lie symmetry analysis and extended tanh method Comput. Math. Appl. 74 1897 1902
20
Wazwaz A M 2005 The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations Appl. Math. Comput. 167 1196 1210
21
Han P F, Zhang Y 2024 Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation Chaos. Soliton. Fract. 184 115008
22
Olver P J 1993 Application of Lie Groups to Differential Equations Springer
23
Bluman G W, Cheviakov A F, Anco S C 2000 Applications of Symmetry Methods to Partial Differential Equations Springer
24
Kametaka Y 1983 On rational similarity solutions of KdV and mKdV equations Proc. Jpn. Acad. 59 407 409
25
Kevrekidis P G, Khare A, Saxena A, Herring G 2004 On some classes of mKdV periodic solutions J. Phys. A 37 10959 10965
26
Konopelchenko B G 1982 On the gauge-invariant description of the evolution equations integrable by Gelfand-Dikij spectral problems Phys. Lett. A 92 323 327
27
Jimbo M, Miwa T 1983 Solitons and infinite-dimensional Lie algebras Publ. Res. Inst. Math. Sci. 19 943 1001
28
Konopelchenko B G, Dubrovsky V G 1992 Inverse spectral transform for the modified Kadomtsev-Petviashvili equation Stud. Appl. Math. 86 219 268
29
Ren B 2015 Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method Phys. Scr. 90 065206
30
Anco S C 2020 Conservation laws and line soliton solutions of a family of modified KP equations Discrete Contin. Dyn. Syst. Ser. S 13 2655 2665
31
Zhao Z L 2019 Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev-Petviashvili equation Appl. Math. Lett. 89 103 110
32
Ma W X, Bullough R K, Caudrey P J 1997 Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations J. Nonlinear Math. Phys. 4 293 309
33
Deng X, Chen K, Zhang D J 2017 Lax triad approach to symmetries of scalar modified Kadomtsev-Petviashvili hierarchy Commun. Theor. Phys. 67 131 136
34
Huang W H, Yu D J, Jin M Z 2003 Some special types of multisoliton solutions of the modified Kadomtsev-Petviashvili equation Commun. Theor. Phys. 40 262 264
35
Chang J H 2019 Soliton interaction in the modified Kadomtse-Petviashvili-(II) equation Appl. Anal. 98 2589 2603
36
Gao X Y, Guo Y J, Shan W R 2022 Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system Appl. Math. Lett. 132 108189
37
El-Shiekh R M, Gaballah M 2022 Integrability, similarity reductions and solutions for a (3+1)-dimensional modified Kadomtsev-Petviashvili system with variable coefficients Partial. Differ. Equ. Appl. Math. 6 100408
38
Zhang Y P, Wang J Y, Wei G M 2015 The Painlevé property, Bäcklund transformation, Lax pair and new analytic solutions of a variable-coefficient KdV equation from fluids and plasmas Phys. Scr. 90 065203
39
Luo X Y, Chen Y 2016 Darboux transformation and N-soliton solution for extended form of modified Kadomtsev-Petviashvili equation with variable-coefficient Commun. Theor. Phys. 66 179 188
40
Ur Rehman H, Tehseen M, Ashraf H, Awan A U, Ali M R 2024 Unveiling dynamic solitons in the (2+1)-dimensional Kadomtsev-Petviashvili equation: insights from fluids and plasma Partial. Differ. Equ. Appl. Math. 9 100633
41
Weiss J, Tabor M, Carnevale G 1983 The Painlevé property for partial differential equations J. Math. Phys. 24 522 526
42
Xu G Q 2009 A note on the Painlevé test for nonlinear variable-coefficient PDEs Comput. Phys. Commun. 180 1137 1144
43
Li X N, Wei G M, Liang Y Q 2010 Painlevé analysis and new analytic solutions for variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation Appl. Math. Comput. 216 3568 3577
44
Liang Y Q, Wei G M, Li X N 2010 Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation Nonlinear Dyn. 62 195 202
45
Zhou T Y, Tian B 2022 Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical Fiber Appl. Math. Lett. 133 108280
46
Olver P J 1995 Equivalence, Invariants and Symmetry Cambridge University Press
47
Ovsiannikov L V 1982 Analysis of Differential Equations Academic Press
48
Bluman G W, Kumei S 1989 Symmetries and Differential Equations Springer
49
Wei G M, Lu Y L, Xie Y Q, Zheng W X 2018 Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation Comput. Math. Appl. 75 3420 3430
50
Guan S N, Wei G M, Li Q 2021 Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation Mod. Phys. Lett. B 35 2150515
51
Ibragimov N H 2007 A new conservation theorem J. Math. Anal. Appl. 333 311 328
52
Ibragimov N H 2011 Nonlinear self-adjointness and conservation laws J. Phys. A. Math. Theor. 44 432002

RIGHTS & PERMISSIONS

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
PDF(889 KB)

68

Accesses

0

Citation

Detail

Sections
Recommended

/