A set of nonlinear stochastic differential equations (NSDE's) that describes a large class of nonlinear stochastic dynamical systems is studied. By virtue of the stochastic generalization of. usual adiabatic approximation, we obtain the solution of equation for the fast variable, and obtain a closed equation for the slow variable. The statistical properties of the-new stochastic variables occurred are studied. The formal NSDE's are treated in the Stratonovich sense and the Ito sense respectively.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Cooperative Dynamics in Complez Physical Systems, ed. H. Takayama, Springer-Verlag, Berlin(1989).
[2] G. Schoner and H. Haken, Z. Phys. B63(1986)493.
[3] G. Schoner and H. Haken, Z. Phys. B68(1987)89.
[4] C.W. Gardiner, Phys. Rev. A29(1984)2814.
[5] E.A. Novikov, Zh. Eksp. Teor. Fiz. 47(1964)1919.
[6] L. Arnold, Stochastic Differential Equations:Theory and Applications, Wiley-Interscience Publication, New York (1974).
[7] C.W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag, Berlin (1983).
[8] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam(1983).
[9] WU Da-jin, CAO Li and YANG Bo, Commun. Theor. Phys. 11(1989)379.
[10] CAO Li, WU Da-jin and WANG Hui-xian, Commun. Theor. Phys. 11(1989)137.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}