Employing the closed-time-path Green's function formalism (CTPGF), the electron selfenergy and vertex function at finite temperature are derived at one-loop level. The so-called "double termn" does not appear in our approach and thus, the unitarity of the theory is ensured automatically. The temperature-dependent mass and vertex corrections are dispersive due to the existence of electron-positron pair background. In the nonrelativistic limit, the explicit forms of shifts due to temperature of both mass and Lande's g factor are given, and their low temperature (T<>m) limits are discussed.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] D.A. Kirzhnits and A.D. Linde, Phys. Lett. 42B(1972)471.
[2] L. Dolan and R. Jackiw, Phys. Rev. D9(1974)3320.
[3] S. Weinberg, Phys. Rev. D9(1974)3357.
[4] J.L. Cambier, J.R. Primack and M. Sher, Nucl. Phys. B209(1982)372.
[5] L. McLerran and B. Svetitsky, Phys. Lett. 98B(1981)195.
[6] P.H. Cox, W.S. Hellman and A. Yildiz, Ann. Phys. (NY) 154(1984)211.
[7] K.C. Ch-ou, Z.B. Su, B.L. Hao and L. Yu, Phys. Rep. 118((1985)1.
[8] H.H. Xu and C.H. Tsai, Phys. Rev. A41(1990)53.
[9] N.P. Landsman and Ch.G. Van Weert, Phys. Rep. 145(1987)141.
[10] H.H. Xu and C.H. Tsai, unpublished.
[11] J.F. Donoghue, B.R. Holstein and R.W. Robinett, Ann. Phys. (NY) 164(1985)233.
[12] K. Ahmed and S. Saleem, Phys. Rev. D35(1987)1861.
[13] J.F. Donoghue and B.R. Holstein, Phys. Rev. D28(1983)340; 29(1983)3004(E).
[14] W. Keil, Phys. Rev. D40(1989)1176.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}