New Type Covariant Differential Calculus on the Quantum Planes

Xing-Chang SONG, Li LIAO

Communications in Theoretical Physics ›› 1992, Vol. 17 ›› Issue (3) : 323-330.

PDF(325 KB)
Welcome to visit Communications in Theoretical Physics, May 26, 2025
PDF(325 KB)
Communications in Theoretical Physics ›› 1992, Vol. 17 ›› Issue (3) : 323-330.
General

New Type Covariant Differential Calculus on the Quantum Planes

  • Xing-Chang SONG1,2,3, Li LIAO1,2
Author information +
History +

Abstract

We find a serierr of new solu tions to Was-Zumino's consistency conditions for noncommutative differential calculus on the quantum planerr. Therre solutions correspond to the quantum orthogonal planerr and quantum symplectic planerr, As a by-product, d2 = 0 is automatically satisfied in this construction.

Cite this article

Download Citations
Xing-Chang SONG, Li LIAO. New Type Covariant Differential Calculus on the Quantum Planes[J]. Communications in Theoretical Physics, 1992, 17(3): 323-330

References

[1] V.G. Drinfeld, Daklad SSR 283(1985)1060; Talk at ICM-86, Berkeley 1986, Vol. I p. 798-820; M. Jimbo, Lett. Math. Phys. 10(1985)247; Commun. Math. Phys. 101(1986)537; S.L. Woronowicz, Group Structure on Noncommutative Spaces, in Fields and Geometry 1986, ed. by A. Jadczyk, World Scientific; Commun. Math. Phys. 111(1987)613; 122(1989)125; P. Kuliih and N. Reshetekhin, Zap Nach Semin LOMI preprint 101(1981)101.



[2] C.N. Yang, Phys. Rev. Lett. 19(1967)1312; R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press (1982).



[3] L.D. Faddeev, Lea Houches Lectures, North Holland (1982).



[4] A. Zamolodchikov and Ab. Zamolodchikov, Annals. Phys. 130(1979)252; H.J. de Vega, Int. J. Mod. Phys. 4(1989)2371.



[5] G. Moore and N. Seiberg, Nucl. Phys. B313(1989)16; Commun. Math. Phys. 123(1989)177; L. Alvarez-Gaum6, C. Gomez and G. Sierra, Phys. Lett. B220(1989)142; E. Witten, Commun. Math. Phys. 121(1989)351.



[6] N.Yu. Reshetikhin LOMI preprint E4-87, E17-87, 1987 Lenhgrad.



[7] M. Chaichian and P.P. Kulish, Phys. Lett. B234(1990)72; T. Hayashi, Commun. Math. Phys. 127(1990)129; M. Chaichian, P. Kulish and J. Lukierski, Phys. Lett. B237(1990)401; P. Kuliih, N.Yu. Reshetikhin, Lett. in Math. Phys. 18(1989)143.



[8] A. Connes, Noncommutative Differential Geometry, Institute des Hautes Eludes Scientifiques. Extrait des Publications Mathematiques n062(1986).



[9] J. Wess and B. Zumino, Covariant Differential Calculw on the Quantum Hyperplane, CERN-TH-5697-90.



[10] L. Faddeev, N. Reshetikhin and L. Takhtajan, AIg. Ana. 1(1987)178; M.L. Ge, L.Y. Wang, K. Xue and Y.S. Wu, Int. J. Mod. Phya. 4(1989)3351.



[11] P. Podles, Lett. Math. Phys. 14(1987)193; 18(1989)107.

Funding

National Natural Science Foundation of China and the Doctoral Programme Foundation of Institute of High Education.

PDF(325 KB)

1293

Accesses

0

Citation

Detail

Sections
Recommended

/