We establish a new method of constructing the functional integral for the matrix elements of the time evolution operator of quantum system directly from the Ifamiltonian. In this first paper, we present the general principles and methods, and realize the construction of the functional integral for a two-dimensional Hamiltonian. In the second paper, the method is extended to arbitrary N-dimensional state space.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] R.P. Feynman and A.R. Hibbs, "Quantum Mechanics and Path Integrals", McGraw-Hill, New York (1965).
[2] T.E. Clark, R. Menikoff and D.H. Sharp, Phys. Rev. D22(1980)3012..
[3] E. Farhi and S. Gutmann, MIT preprint, CTP#1943(1991)..
[4] E. Farhi and S. Gutmann, Int. Jour. Mod. Phys. A5(1990)3092.
[5] M. Carreau, E. Farhi and S. Gutmann, Phys. Rev. D42(1990)1194.
[6] S. Karlin and H.M. Taylor, UA First Course in Stochastic Processesn, second - edition, Academic Press, New York(1975), chapter 4.
[7] Z.X. WANG and D.R. GUO, "Introduction to Special Functions", Academic Press, Beijing(l965).
[8] Z.C. ZHANG, C.S. LI and Y.S. WEI, Chongqing University, preprint, CQU-TH-6(1992).
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
the funds for excellent young teachers from the State Educational Committee of China;the applied fundamental research foundation of Sichuan province.
{{custom_fund}}