Unlike masked with analog chaotic sequence, digital information is masked with binary chaotic sequence with a method proposed by U. Parfitz and 2. Ergezinger (Phys. Lett. 198A (1994) 146). It is demonstrated by numerical simulations that both security and robustness of this communication method are improved. When considered as digital communication, the method is very robust to transmission errors.
Key words
communication /
binary (analog) chaotic sequence /
robust /
security
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] K.M.Cuomo and A.V. Oppenheim, Phys. Rev. Lett. 71 (1993) 65.
[2] U. Parlitz, L.O. Chua, L. Kocarev, K.S. Halle and A. Shang, Int. J. Bifurcation and Chaos 2(1992) 973.
[3] H. Dedieu, M.P. Kennedy and M. Hasler, IEEE Trans. Circuits Syst. 40(10) (1993) 634.
[4] L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74 (1995) 5028.
[5] Changsong ZHOU and Tianlun CHEN, Phys. Lett. A225 (1997) 60.
[6] S. Hayes, C. Grebogi and E. Ott, Phys. Rev. Lett. 70 (1993) 3031.
[7] U. Parlitz and S. Ergezinger, Phys. Lett. A188 (1994) 146.
[8] K.M. Short, Int. J. Bifurcation and Chaos 4 (1994) 959.
[9] G. PCrez and H.A. Cerdeira, Phys. Rev. Lett. 74 (1995) 1970.
[10] Changsong ZHOU and Tianlun CHEN, Phys. Lett. A234 (1997) 429.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China
{{custom_fund}}