Exact Solution of Jaynes-Cummings Model Without Rotating Wave Approximation

FENG Mang, WANG Kelin, SHI Lei, FANG Ximing, YAN Min, ZHU Xiwen

Communications in Theoretical Physics ›› 1998, Vol. 30 ›› Issue (2) : 169-172.

PDF(250 KB)
Welcome to visit Communications in Theoretical Physics, May 20, 2025
PDF(250 KB)
Communications in Theoretical Physics ›› 1998, Vol. 30 ›› Issue (2) : 169-172.
General

Exact Solution of Jaynes-Cummings Model Without Rotating Wave Approximation

  • FENG Mang1, WANG Kelin2, SHI Lei1, FANG Ximing1, YAN Min1, ZHU Xiwen1
Author information +
History +

Abstract

In coherent-state representation, the Jaynes-Cummings (JC) model in the absence of rotating wave approximation (RWA), i.e., in detuning case, is treated by the solution of some differential equations with constant coefficients and can be exactly solved. This approach can be easily extended to deal with the JC model without RWA in more complicated cases.

Key words

Jaynes-Cummings model / exact solution

Cite this article

Download Citations
FENG Mang, WANG Kelin, SHI Lei, FANG Ximing, YAN Min, ZHU Xiwen. Exact Solution of Jaynes-Cummings Model Without Rotating Wave Approximation[J]. Communications in Theoretical Physics, 1998, 30(2): 169-172

References

[1] E.T. Jaynes and F.W. Cummings, Proc. IEEE 51 (1963) 89.

[2] B.W. Shore and P.L. Knight, J. Mod. Optics 40 (1993) 1195 and references therein.

[3] P. Meystre, Phys. Rep. 219 (1992) 243.

[4] H. Walther, Phys. Rep. 219 (1992) 263.

[5] For example, R. Blatt et al., Phys. Scri. T59 (1995) 294; J.I. Cirac et al., Phys. Rev. A49 (1994) 421.

[6] For example, H.J. Carmichael et al., Phys. Rev. A40 (1989) 5516.

[7] M. Tavis and E.W. Cummings, Phys. Rev. 170 (1968) 379.

[8] J. Crnugelj et al., Phys. Rev. A50 (1994) 1785 and references therein.

[9] S. Swain, J. Phys. A6 (1973) 1919.

[10] R. Ramirez and M. Orszag, J. Math. Phys. 22 (1981) 1306.

[11] M.D. Crip, Phys. Rev. A43 (1991) 2430.

[12] K. Zaheer and M.S. Zubairy, Phys. Rev. A37 (1989) 1628.

[13] S.J.D. Phoenix, J. Mod. Optics 36 (1989) 1163.

[14] J. Plata and J.M.G. Llorente, Phys. Rev. A48 (1993) 782.

[15] J.W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-Wesley Publishing Company (1987) pp. 20-25.
PDF(250 KB)

2199

Accesses

0

Citation

Detail

Sections
Recommended

/