In coherent-state representation, the Jaynes-Cummings (JC) model in the absence of rotating wave approximation (RWA), i.e., in detuning case, is treated by the solution of some differential equations with constant coefficients and can be exactly solved. This approach can be easily extended to deal with the JC model without RWA in more complicated cases.
Key words
Jaynes-Cummings model /
exact solution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] E.T. Jaynes and F.W. Cummings, Proc. IEEE 51 (1963) 89.
[2] B.W. Shore and P.L. Knight, J. Mod. Optics 40 (1993) 1195 and references therein.
[3] P. Meystre, Phys. Rep. 219 (1992) 243.
[4] H. Walther, Phys. Rep. 219 (1992) 263.
[5] For example, R. Blatt et al., Phys. Scri. T59 (1995) 294; J.I. Cirac et al., Phys. Rev. A49 (1994) 421.
[6] For example, H.J. Carmichael et al., Phys. Rev. A40 (1989) 5516.
[7] M. Tavis and E.W. Cummings, Phys. Rev. 170 (1968) 379.
[8] J. Crnugelj et al., Phys. Rev. A50 (1994) 1785 and references therein.
[9] S. Swain, J. Phys. A6 (1973) 1919.
[10] R. Ramirez and M. Orszag, J. Math. Phys. 22 (1981) 1306.
[11] M.D. Crip, Phys. Rev. A43 (1991) 2430.
[12] K. Zaheer and M.S. Zubairy, Phys. Rev. A37 (1989) 1628.
[13] S.J.D. Phoenix, J. Mod. Optics 36 (1989) 1163.
[14] J. Plata and J.M.G. Llorente, Phys. Rev. A48 (1993) 782.
[15] J.W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-Wesley Publishing Company (1987) pp. 20-25.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}