Effects of Time Reversal-Symmetry Breaking on Localization: Band Random Matrix Description

GONG Jiangbin, XU Gong'ou

Communications in Theoretical Physics ›› 1999, Vol. 31 ›› Issue (1) : 91-98.

PDF(427 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(427 KB)
Communications in Theoretical Physics ›› 1999, Vol. 31 ›› Issue (1) : 91-98.
General

Effects of Time Reversal-Symmetry Breaking on Localization: Band Random Matrix Description

  • GONG Jiangbin, XU Gong'ou
Author information +
History +

Abstract

We investigate two kinds of band random matrix ensemble (BRM) with different time reversal symmetry, namely, BRM of complex and quaternion real (C-BRM and QR-BRM) Hermitians. Their scaling behaviors of localization are numerically studied. Results show that the removal of time reversal symmetry yields a multiplication of the localization length by a factor 2 (or, 1/2) in the absence (or, presence) of Icramers' degeneracy. This leads us, to expect a simple and universal description of the effects of time-riversal symmetry breaking on localization that the localization length ξ is given by ξ = βb2/4 where b is the band-width parameter and β the universality parameter.

Key words

time reversal symmetry breaking / band random matrix ensemble

Cite this article

Download Citations
GONG Jiangbin, XU Gong'ou. Effects of Time Reversal-Symmetry Breaking on Localization: Band Random Matrix Description[J]. Communications in Theoretical Physics, 1999, 31(1): 91-98

References

[1] M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic, New York(1965).

[2] C.E. Porter, Statistical Theories of Spectra, Academic, New York(1965).

[3] F. Haake, Quantum Signatures of Chaos, Springer-Verlag, Heidelberg(1991).

[4] L.E. Reichl, The Transition to Chaos in Conservative Classical Systems: Quantum Manzfestations,Springer-Verlag, New York(1992).

[5] M.L. Metha, Random Matrices, Academic, Boston(1991).

[6] M. Robnik and M.V. Berry, J. Phys. A19(1986)669.

[7] N. Rosenzweig and C.E. Porter, Phys. Rev. 120(1960)1698.

[8] J.B. French, V.K. Kota, A. Pander and S. Tomsovie, Ann. Phys.(N.Y.)181(1988)198.

[9] U. Stoffregen, J. Stein, H.J. Stockmann, kl. Kus and F. Haake, Phys. Rev. Lett. 74(1995)2666.

[10] Paul So, S.M. Xnlage, E. Ott and R.N. Oerter, Phys. Rev. Lett. 74(1995)2662.

[11] G. Casati, I. Guarneri, F.M. Izrailev and R. Scharf, Phys. Rev. Lett. 64(1990)5.

[12] G. Casati, L. Molinari and F.hil. Jzrailev, Phys. Rev. Lett. 64(1990)1851.

[13] Gutzwiller, Chaos zn Classical and Quantum Mechanics, Springer-Verlag, New York(1990).

[14] M. Feingold, A. Gioletta, F.M. Izrailev and L. Molinari, Phys. Rev. Lett. 70(1993)2936.

[15] G. Casati, B.V. Chirikav, I. Guarneri and F.M. Izrailev, Phys. Rev. E48(1993)1613.

[16] G. Casati, I. Guarneri, F.M. Izrailev and K. Zyczkowski, Phys. Rev. Lett. 72(1994)2697.

[17] A.4. Gribakina, V.V. Flambaum and G.F. Gribakin, Phys. Rev. E52(1995)5667.

[18] J.L. Pichard, M. Sanquer, K. Slevin and P. Debray, Phys. Rev. Lett. 65(1990)1812.

[19] R. Bliimel and U. Smilanski, Phys. Rev. Lett. 69(1992)217.

[20] M. Feingold, D.M. Leitner and M. Wilkson, Phys. Rev. Lett. 66(1991)986.

Funding

The project supported by the National Basic Research Project "Nonlinear Science" of China and Nitional Natural Science Foundation of China.

PDF(427 KB)

1283

Accesses

0

Citation

Detail

Sections
Recommended

/