An Approach to the Study of Quantum Phase Problem Based on Action-Angle Wigner Distribution

JIE QuanLin, WANG ShunJin

Communications in Theoretical Physics ›› 1999, Vol. 32 ›› Issue (1) : 71-76.

PDF(311 KB)
Welcome to visit Communications in Theoretical Physics, May 21, 2025
PDF(311 KB)
Communications in Theoretical Physics ›› 1999, Vol. 32 ›› Issue (1) : 71-76.
General

An Approach to the Study of Quantum Phase Problem Based on Action-Angle Wigner Distribution

  • JIE QuanLin1, WANG ShunJin1,2,3
Author information +
History +

Abstract

Quantum phase distribution is expressed in terms of action-angle Wigner distribution function. It turns out to coincide with the limit case of Pegg-Barnett theory. This discrete phase space approach, in which some concepts such as quantum phase operator are not needed, can express phase-related quantities in a unified way. The expectation values and variances of cosθ and sinθ are the same as those of Susskind-Glogolver theory. The phase-(particle) number uncertainty has a simple form in this formalism.

Key words

quantum phase problem / action-angle Wigner distribution

Cite this article

Download Citations
JIE QuanLin, WANG ShunJin. An Approach to the Study of Quantum Phase Problem Based on Action-Angle Wigner Distribution[J]. Communications in Theoretical Physics, 1999, 32(1): 71-76

References

[1] R. Lynch, Phys. Rep. 256 (1995) 367.



[2] W.H. Richardson, S. Machida and Y. Yamamoto, Phys. Rev. Lett. 66 (1991) 2867.



[3] P. Adam, S. Szabo and J. Janszky, Phys. Lett. A215 (1996) 229.



[4] P.A.M. Dirac, Proc. Roy. Soc. (London) A114 (1927) 243.



[5] L. Susskind and J. Glogower, Phys. 1 (1964) 49.



[6] H. Paul, Fortschr. Phys. 22 (1974) 657.



[7] J.M. Levy-Leblond, Ann. Phys. 101 (1976) 319.



[8] S.M. Barnett and D.T. Pegg, J. Mod. Opt. 36 (1989) 7; Phys. Rev. A41 (1990) 3427; D.T. Pegg and S.M. Barnett, Phys. Rev. A39 (1989) 1665.



[9] W. Schleich, J.P. Dowling, R.J. Horowicz and S. Varro, New Frontiers in Quantum Optics and Quantum Electrodynamics, ed. A. Barut, Plenum, New York (1990).



[10] C.W. Gardiner, Quantum Noise, Springer, Berlin (1991) Chap. 4.



[11] U. Leonhardt and H. Paul, Physica Scripta, Special Issue devoted to: Quantum Phase and Phase Dependent Measurements, T48 (1993) 45.



[12] J.A. Wheeler, Lett. Math. Phys. 10 (1985) 201.



[13] D.F. Walls and G.L. Milbern, Quantum Optics, Springer, Berlin (1994) Chap. 4.



[14] M. Freyberger and W. Schleich, Phys. Rev. Lett. 72 (1993) 1952.



[15] J. Ford, G. Mantica and G.H. Ristow, Physica D50 (1991).493.



[16] R. Scharf and B. Sundaram, Phys. Rev. A45 (1992) 2615.



[17] M. Freyberger and A.M. Herkommer, Phys. Rev. 447 (1994) R30.



[18] M.G. Raymer, M. Beck and D.F. MaAlister, Phys. Leet. 72 (1994) 1137.
PDF(311 KB)

1323

Accesses

0

Citation

Detail

Sections
Recommended

/